
Mercurial Commitments with Applications to Zero-Knowledge Sets∗

Melissa Chase† Alexander Healy‡ Anna Lysyanskaya§ Tal Malkin¶ Leonid Reyzin‖

Abstract

We introduce a new flavor of commitment schemes, which we call mercurial commitments. Infor-
mally, mercurial commitments are standard commitments that have been extended to allow for soft
decommitment. Soft decommitments, on the one hand, are not binding but, on the other hand, cannot
be in conflict with true decommitments.

We then demonstrate that a particular instantiation of mercurial commitments has been implicitly
used by Micali, Rabin and Kilian to construct zero-knowledge sets. (A zero-knowledge set scheme
allows a Prover to (1) commit to a set S in a way that reveals nothing about S and (2) prove to
a Verifier, in zero-knowledge, statements of the form x ∈ S and x /∈ S.) The rather complicated
construction of Micali et al. becomes easy to understand when viewed as a more general construction
with mercurial commitments as an underlying building block.

By providing mercurial commitments based on various assumptions, we obtain several different
new zero-knowledge set constructions.

1 Introduction

1.1 Mercurial Commitments

A traditional cryptographic commitment is often compared to a safe. The sender places a particular
value in the safe, locks it and gives it to the recipient. The recipient cannot see the value, but is assured
that it will not change while inside the safe. Then, whenever the sender chooses to, he can reveal the
secret code needed to open the safe, enabling the recipient to retrieve the hidden value. Therefore, the
two usual requirements of commitment are that it be binding and hiding : the sender is bound to the
message, but the message is hidden from the recipient.

We propose a variant of traditional commitments, where the opening protocol is two-tiered. Partial
opening, which we call “teasing”, is not truly binding: it is possible for the sender to come up with a
commitment that can be teased to any value of the sender’s choice. True opening, on the other hand,
is binding in the traditional (computational) sense: it is infeasible for the sender to come up with a
commitment that he can open to two different values.

Despite the fact that a commitment can potentially be teased to any value, a tease is not merely
a meaningless assertion. A tease of a commitment to a value m is a guarantee that the commitment
cannot be opened to any value other than m. In other words, the recipient of a tease knows that if the

∗A preliminary version of this work appeared in Eurocrypt 2005 [CHL+05].
†Department of Computer Science, Brown University, Providence, RI 02912. email: mchase@cs.brown.edu.
‡Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. email:

ahealy@fas.harvard.edu.
§Department of Computer Science, Brown University, Providence, RI 02912. email: anna@cs.brown.edu.
¶Department of Computer Science, Columbia University, New York, NY 10027. email: tal@cs.columbia.edu.
‖Department of Computer Science, Boston University, Boston, MA 02215. email: reyzin@cs.bu.edu.

1

commitment can be opened at all, then it will be to the same value. It is infeasible for the sender to
come up with a commitment that can be teased to m1 and opened to m2 �= m1.

This immediately implies, of course, that if the sender can open a commitment at all, then it can
be teased to only one value. Thus, the sender must choose, at the time of commitment, whether to
“soft-commit,” so as to be able to tease to multiple values but not open at all, or to “hard-commit,” so
as to be able to tease and to open to only one particular value. The recipient, however, cannot tell which
of the two options the sender has chosen (this is ensured by the hiding property).

We call this new primitive mercurial commitment.
Mercurial commitments are different from trapdoor or chameleon commitments of [BCC88]. All

chameleon commitments are equivocal whenever the sender knows a trapdoor for the commitment scheme.
In mercurial commitments, on the other hand, the sender is given the choice, at the time of commitment,
whether to make the commitment equivocal or binding. Furthermore, in chameleon commitments, equiv-
ocated and regular decommitments look the same to the recipient; whereas in mercurial commitments,
the recipient may be content with the decommitment that may have been equivocated (tease), or may
require the stronger full decommitment (open).

Note that mercurial commitments directly imply conventional commitments as a special case, when
only hard-commit and open are used (and the soft-commit and tease functionalities are ignored).

We have not yet addressed the hiding property of mercurial commitments. For our application, we
need a very strong hiding property, namely, simulatability (which we can provide in the shared-random-
string or trusted-parameters model1, or else interactively). However, such strong hiding does not seem to
be an essential property of mercurial commitments, and it is conceivable that, if mercurial commitments
find other applications, weaker hiding properties will suffice.2

We formally define mercurial commitments in Section 2.2. We provide four constructions in Sec-
tion 2.3: based on general (possibly noninteractive) zero-knowledge, claw-free permutations, discrete
logarithms, and factoring respectively. The last two constructions are efficient enough to be useable in
practice.

We distilled the notion of mercurial commitments out of the zero-knowledge set construction of [MRK03],
where a particular construction (namely, the one based on discrete logarithms) of mercurial commit-
ments is implicitly used. We believe that abstracting this notion and separating its construction from
the construction of zero-knowledge sets themselves is beneficial. First, as we demonstrate in Section 3.2,
the [MRK03] construction of zero-knowledge sets becomes conceptually simpler when mercurial commit-
ments are used as a building block. Second, when mercurial commitments can be studied in isolation, it
is much easier to come up with novel constructions for them, and therefore also for zero-knowledge sets.
Finally, mercurial commitments are interesting independently of this specific application because of their
potentially broader applicability.

1.2 Zero-Knowledge Sets

Zero-knowledge sets (ZKS) were recently introduced by Micali, Rabin, and Kilian [MRK03]. ZKS allow
a prover to commit to an arbitrary finite set S in such a way that for any string x he can provide an
efficient sound proof of whether x ∈ S or x /∈ S, without revealing any knowledge beyond this membership
assertion. That is, the recipient (verifier) of the proof learns nothing else about the set S, not even the
size of S. We elaborate on the formal definition of ZKS in Section 3.1.

1The shared-random-string model assumes that a uniform random string is available for all parties to use. The trusted-
parameters model assumes that a public string from some (possibly complex) distribution has been produced and is available
for all parties to use; furthermore the (uniform) coins used to produce that string are unknown to the parties (for instance,
such a string could be a product n of two large primes p and q, where the primes themselves are unknown to the parties).

2Subsequent to the publication of [CHL+05], such weaker properties were considered in [CDV06].

2

As pointed out by [MRK03], the notion of zero-knowledge sets can be extended to zero-knowledge
elementary databases, where each element x ∈ S has a value v(x) associated with it. After committing
to S, the prover can provide an efficient proof for each x of either “x ∈ S and v(x) = v”, or “x /∈ S”,
without revealing any further information. Sets, of course, are a special case of this, where the value
associated with each x ∈ S is 1. Throughout this paper, we use ZKS to refer also to the more general
zero-knowledge elementary databases.

Micali, Rabin, and Kilian give a construction of zero-knowledge sets under the discrete logarithm
assumption in the shared random string model. This construction is noninteractive (i.e., both the initial
commitment and query answers require a single message from the prover to the verifier) with O(k2)-bit
proofs for security parameter k. They do not show how to remove the number-theoretic details of their
construction, and leave open whether constructions not based on the discrete logarithm assumption are
possible at all.

It is an interesting problem to consider what alternative constructions are possible, and under what
assumptions these constructions can be realized.

Ostrovsky, Rackoff and Smith [ORS04] provide constructions for consistent database queries, which
allow the prover to commit to a database, and then provide query answers that are provably consis-
tent with the commitment. They also consider the problem of adding privacy to such protocols. Their
constructions can handle queries much more general than just membership queries; they yield two con-
structions of ZKS as special cases. The first construction is a feasibility result, showing that interactive
ZKS can be built out of (public) collision-resistant hash functions (CRHF) and zero-knowledge proofs
of NP statements (which require only one-way functions, which are implied by CRHF); noninteractive
ZKS can be built in the shared random string model out of CRHF and noninteractive zero-knowledge.
The second construction is more efficient, based on the assumptions of CRHF and homomorphic com-
mitments. Unfortunately, it requires interaction (which can be removed in the random oracle model) and
requires the prover to keep a counter t of the number of queries asked so far. (For security parameter k,
the proofs are of size O(tk4) and, in particular, grow with t.3)

We provide an alternative proof of the same feasibility result, as well as more efficient constructions
based on different assumptions, as detailed next.

1.3 Zero-Knowledge Sets from Mercurial Commitments

We describe the work of [MRK03] in light of our new primitive, thus showing how to construct zero-
knowledge sets based on mercurial commitments and collision-resistant hash functions. Different in-
stantiations of mercurial commitments will result in different ZKS constructions with different security
assumptions and efficiency.

Instantiating our ZKS construction with mercurial commitments based on general zero-knowledge
gives an alternative proof of the feasibility of ZKS from general assumptions (as mentioned above, another
such proof was given independently by [ORS04]). It shows that (noninteractive) ZKS can be constructed
in the shared random string model by using as building blocks noninteractive zero-knowledge (NIZK)
proofs [BDMP91, FLS99], (conventional) commitment schemes (which are already implied by NIZK),
and CRHF.4 If one is willing to add interaction to the revealing (membership proof) phase of ZKS, our
construction shows that CRHF and interactive ZKS are equivalent (because NIZK can be replaced with

3The proof size given in [ORS04] is O(tdsk2), where s is a bound on the length of each key x, and d is a bound on
logarithm of the set size. However, in order to hide the set size, we must first hash each key to a k-bit value, and set d = k.

4It is known how to construct NIZK proofs based on the existence of trapdoor permutations (TDP) [FLS99, BY96], or
based on the existence of verifiable random functions (VRF) [GO92, MRV99]. TDP and VRF are, as far as we currently
know, incomparable assumptions. Indeed, VRFs can be constructed based on gap-Diffie-Hellman groups [Lys02b], while no
trapdoor permutation is known based on such groups.

3

regular zero-knowledge proofs, which can be based on one-way functions, which are implied by CRHF; on
the other hand, it is quite clear that CRHF is necessary for ZKS, because the initial commitment to the
set must be collision-resistant). Unfortunately, the above discussion applies merely to feasibility results;
none of these constructions is practical.

Instantiating our ZKS construction with mercurial commitments based on claw-free permutations
gives ZKS in the trusted parameters model with proof length O(k3). The construction based on factoring
further improves the efficiency, giving ZKS with proof length O(k2) and verification time O(k4), suitable
for practical implementation in the trusted parameters model.

For the case of ZKS from discrete-logarithm-based mercurial commitments (which are the ones im-
plicitly used in [MRK03]), we provide a constant-factor improvement over the [MRK03] construction by
utilizing a hash function better suited for such commitments. The resulting construction is within the
realm of practical implementation in the shared random string model, requiring proofs of length O(k2)
and verification time O(k4) (constants hidden by O here are fairly small and are further analyzed in
Section 3.3.2).

2 The New Primitive: Mercurial Commitments

2.1 GMR Notation

Following Micali, Rabin, and Kilian [MRK03], we use the GMR notation [GMR88, Mic]. This section is
almost verbatim from [Lys02a].

Let A be an algorithm. By A(·) we denote that A has one input (resp., by A(·, . . . , ·) we denote that
A has several inputs). By y ← A(x), we denote that y was obtained by running A on input x. If A is
deterministic, then this y is unique; if A is probabilistic, then y is a random variable. If S is a finite set,
then y ← S denotes that y was chosen from S uniformly at random. By y ∈ A(x) we mean that the
probability that y is output by A(x) is positive.

By AO(·), we denote a Turing machine that makes queries to an oracle O. I.e., this machine will have
an additional (read/write-once) query tape, on which it will write its queries in binary; once it is done
writing a query, it inserts a special symbol “#”. By external means, once the symbol “#” appears on the
query tape, oracle O is invoked and its answer appears on the query tape adjacent to the “#” symbol.
By Q = Q(AO(x)) ← AO(x) we denote the contents of the query tape once A terminates, with oracle O
and input x. By (q, a) ∈ Q we denote the event that q was a query issued by A, and a was the answer
received from oracle O.

By (state, y) ← A(state, x) we denote that A is a stateful algorithm, and the variable state denotes
its state information. We will write (stateA, y) ← BA(stateA,·)(x) to denote that B has oracle access to
a stateful algorithm A.

Let b be a boolean function. By (y ← A(x) : b(y)), we denote the event that b(y) is true after y was
generated by running A on input x. The statement Pr[{xi ← Ai(yi)}1≤i≤n : b(xn)] = α means that
the probability that b(xn) is TRUE after the value xn was obtained by running algorithms A1, . . . , An on
inputs y1, . . . , yn, is α, where the probability is over the random choices of the probabilistic algorithms
involved.

A function ν(k) is negligible if for every positive polynomial p(·) and for sufficiently large k, ν(k) < 1
p(k) .

2.2 Definition

As we describe in the introduction, a mercurial commitment is a commitment scheme with additional
features. The first feature is that, in addition to the usual algorithm for opening a commitment, there is
also an algorithm to partially open, or tease. The partial decommitment of a commitment C to a value

4

x means, in essence, that if C can be opened at all, then it can be opened only to x. The second feature
of a mercurial commitment scheme is that a commitment C can be formed in two ways: it may be a
hard commitment, that is, a commitment that can be opened (and teased) in only one way; or a soft
commitment that cannot be opened at all, but can be teased to any value. Let us now describe this more
formally.

A mercurial commitment scheme consists of the following algorithms:

Setup This is a randomized algorithm run by a trusted third party that sets up the public key for
the commitment. We write PK ← Setup(1k). The chosen public key PK defines the (efficiently
samplable) domain of possible committed values. Let us denote this domain DPK . If this algorithm
merely outputs its random coins, then the mercurial commitment scheme is in the shared random
string model. Else it is in the stronger trusted parameters model.

Hard-Comm This is the deterministic algorithm used to commit to a value. It takes as input the public
key PK, a value x ∈ DPK , and a random string r, and outputs the commitment C. We write
C = Hard-Comm(PK,x, r).

Soft-Comm This is the deterministic algorithm used to soft-commit. That is to say, a value produced
by this algorithm is not really a commitment because it can never be opened. But it can be partially
opened (teased) to any value of the committer’s choice. This algorithm takes as input the public
key PK and the random string r, and outputs a value C. We write C = Soft-Comm(PK, r).

Tease This is the randomized algorithm for partially opening (teasing) a hard or soft commitment. On
input (PK,x, r, C), where C is either a hard commitment to x with string r, or a soft commitment
with string r, Tease outputs the partial decommitment τ for teaser value x. We write τ ←
Tease(PK,x, r, C).

Ver-Tease This is the algorithm that either accepts or rejects the partial decommitment τ to teaser
value x. It takes as input the public key PK, the commitment C, and the values x and τ .

Open This algorithm opens the commitment C. If C = Hard-Comm(PK,x, r), then on input (PK,x, r, C),
Open will output the decommitment π for the committed value x. We write π ← Open(PK,x, r, C).

Ver-Open This is the algorithm that either accepts or rejects the decommitment π to the value x. It
takes as input the public key PK, the commitment C, and the values x and π.

As usual for commitment schemes, we require three properties: (1) correctness: Ver-Tease will
always accept the correctly formed partial decommitment τ of C for the correct teaser value x, and
Ver-Open will always accept the correctly formed decommitment π of C for the correct x; (2) binding:
no adversary can create C such that it can be opened to two different values, and no adversary can
create C such that it can be opened to one value but partially decommitted (teased) to another value;
(3) hiding: no adversary can learn whether C is a soft commitment or hard commitment, and in case it
is a hard commitment, no adversary can learn the committed value x; moreover, we require that there
be a simulator that will be able to form C in such a way that it can not only partially decommit (tease)
it to any teaser value, but also open it to any value, such that the view of the receiver will be the same
whether it is talking to the committer or to the simulator.

More precisely:

Definition 2.1. A set of algorithms Setup, Hard-Comm, Soft-Comm, Tease, Open, Ver-Tease
and Ver-Open satisfies the correctness property of mercurial commitments if for all PK ∈ Setup(1k)

5

• Correctness for Hard-Comm: For all x ∈ DPK , for all strings r, if C = Hard-Comm(PK,x, r),
then

– for all τ ∈ Tease(PK,x, r, C), Ver-Tease(PK,C, x, τ) = ACCEPT;

– for all π ∈ Open(PK,x, r), Ver-Open(PK,C, x, π) = ACCEPT;

• Correctness for Soft-Comm: For all r, if C = Soft-Comm(PK, r), then for all x ∈ DPK , for all
τ ∈ Tease(PK,x, r, C), Ver-Tease(PK,C, x, τ) = ACCEPT.

Definition 2.2. A set of algorithms Setup, Ver-Tease and Ver-Open satisfies the binding property
of mercurial commitments if for all probabilistic polynomial-time nonuniform adversaries {Ak} there
exists a negligible function ν such that

Pr[PK ← Setup(1k); (C, x, x′, π, τ) ← Ak(PK) :
Ver-Open(PK,C, x, π) = ACCEPT ∧

(Ver-Open(PK,C, x′, τ) = ACCEPT ∨ Ver-Tease(PK,C, x′, τ) = ACCEPT) ∧
x �= x′ ∈ DPK] = ν(k)

Definition 2.3. A set of algorithms Setup, Hard-Comm, Soft-Comm, Tease, Open satisfies the
hiding (simulatability) property of mercurial commitment if

1. There exists a set of algorithms Sim-Setup, Sim-Commit, Sim-Tease, Sim-Open with the fol-
lowing specifications:

Sim-Setup This is a randomized algorithm that, in addition to creating the commitment public
key PK, also outputs a trapdoor key TK that allows the simulator some extra power that the
legitimate committer does not have. We write (PK,TK) ← Sim-Setup(1k).

Sim-Commit This is the deterministic algorithm that the simulator uses to compute a commitment.
Besides (PK,TK), it takes a random string r as input. We write C = Sim-Commit(PK,TK, r).

Sim-Tease This is the algorithm that the simulator uses to compute a partial decommitment for
any value x ∈ DPK . On input (PK,TK, r, x), it gives the partial decommitment τ for the
commitment C = Sim-Commit(PK,TK, r). We write τ ← Sim-Tease(PK,TK, r, x).

Sim-Open This is the algorithm that the simulator uses to compute a decommitment for any value
x ∈ DPK . On input (PK,TK, r, x), it outputs the decommitment π for the commitment C =
Sim-Commit(PK,TK, r). We write π ← Sim-Open(PK,TK, r, x).

2. Let the following algorithms be defined as follows:

CommitterPK The committer algorithm CPK is a stateful algorithm that responds to requests
to hard- and soft-commit to specific values by running Hard-Comm and Soft-Comm, and
then, on request runs the Tease and Open algorithms on the corresponding commitments.
It also maintains a list L of commitments issued so far. Initially, list L is empty. Here is how
CPK responds to various inputs:

• On input (Hard-Comm, x), choose a random string r. Compute C = Hard-Comm(PK,x, r).
Store (Hard-Comm, C, x, r) in the list L. Output C.

• On input (Soft-Comm), choose a random string r. Compute C = Soft-Comm(PK, r).
Store (Soft-Comm, C, r) in the list L. Output C.

• On input (Tease, C, x′):

6

– Check if C ∈ L. If it is not, output “fail.” Else, retrieve the record corresponding to
C.

– If C’s entry on the list is of the form (Hard-Comm, C, x, r): if x �= x′, output “fail.”
Otherwise, output τ = Tease(PK,x, r, C).

– Else if C’s entry on the list is of the form (Soft-Comm, C, r): output τ = Tease(PK,
x′, r, C).

• On input (Open, C, x), check if for some r, (Hard-Comm, C, x, r) is on the list. If it is
not, output “fail.” Else, output Open(PK,x, r).

Simulator(PK,TK) The simulator S(PK,TK) answers the same types of queries as the Committer
CPK , but by running different algorithms. It also maintains the same list L, initialized to
empty.
• On input (Hard-Comm, x), choose a random string r. Compute C =

Sim-Commit(PK,TK, r). Store (Hard-Comm, C, x, r) in the list L. Output C.
• On input (Soft-Comm), choose a random string r. Compute C =

Sim-Commit(PK,TK, r). Store (Soft-Comm, C, r) in the list L. Output C.
• On input (Tease, C, x′):

– Check if C ∈ L. If it is not, output “fail.” Else, retrieve the record corresponding to
C.

– If C’s entry on the list is of the form (Hard-Comm, C, x, r): if x �= x′, output “fail.”
Otherwise, output τ ← Sim-Tease(PK,TK,x, r, C).

– Else if C’s entry on the list is of the form (Soft-Comm, C, r): output τ ←
Sim-Tease(PK,TK,x′, r, C).

• On input (Open, C, x), check if for some r, (Hard-Comm, C, x, r) is on the list. If it is
not, output “fail.” Otherwise, output Sim-Open(PK,TK,x, r).

Then no polynomial-time distinguisher can tell whether he is talking to a Committer or to a
Simulator. Namely, for all probabilistic polynomial-time families of oracle Turing machines {D?

k},
there exists a negligible function ν(k) such that

Pr[PK0 ← Setup(1k); (PK1,TK) ← Sim-Setup(1k);
O0 = CPK0 ;O1 = S(PK1,TK);

b ← {0, 1}; b′ ← DOb
k (pkb) : b = b′] = 1/2 + ν(k)

(In this definition, we create two oracles: O0 is a Committer, and O1 is a Simulator. Then the
distinguisher interacts with a randomly chosen oracle, and has to guess which oracle it is talking
to.)

Remarks. Note that the notion of simulatability can be defined in three flavors: perfect, statistical,
and computational, corresponding to the strength of the distinguisher D. Above, we gave the definition
for the computational flavor since it is the least restrictive. Also note that the definition above is non-
interactive. The definition can be extended to an interactive setting, where the decommitment (opening
or teasing) is interactive. Throughout the paper, in order to keep the presentation clean, we continue by
default to consider noninteractive mercurial commitments (and noninteractive ZKS), and only mention
the interactive case in side remarks.

Definition 2.4 (Mercurial commitment scheme). Algorithms Setup, Hard-Comm, Soft-Comm,
Tease, Open, Ver-Tease and Ver-Open constitute a mercurial commitment scheme if they satisfy
the correctness, binding, and hiding (simulatability) properties.

7

2.3 Constructions

2.3.1 From General Assumptions

We construct mercurial commitments based on a many-theorem noninteractive zero-knowledge proof
system [BDMP91, FLS99]. Such a proof system can be constructed from any trapdoor permutation
(TDP) [BDMP91, BY96], or from a verifiable random function (VRF) [GO92, MRV99]. Existence of
TDPs and existence of VRFs are, as far as we know, incomparable assumptions, since VRFs can be
constructed based on gap-Diffie-Hellman groups [Lys02b], while no trapdoor permutation is known based
on such groups. This construction is in the shared random string model (not in the trusted parameters
model).

Suppose that we are given a many-theorem noninteractive zero-knowledge (NIZK) proof system for an
NP-complete language L. This proof system operates in the public random string model, and consists of
polynomial-time algorithms Prove and Verify. Further suppose that we are given a conventional nonin-
teractive unconditionally binding commitment scheme, consisting of algorithms (Comm-Setup,Commit).
Note that such a commitment scheme is already implied by the existence of NIZK, because NIZK im-
plies OWFs, and in the public-random-string model, OWFs imply setup-free unconditionally binding bit
commitment [Nao91, HILL99]. More detailed definitions of these standard building blocks, NIZK and
commitment schemes, are given in Appendix A.

Below, we describe a (noninteractive) mercurial commitment scheme based on a NIZK proof system
and any noninteractive commitment scheme. The idea of this construction is simple: a mercurial commit-
ment will consist of two conventional commitments. The first one determines whether it is a hard-commit
or soft-commit. The second one determines the value itself in case of hard-commit. To tease, simply
prove (using NIZK) that “either this is a soft-commit, or the committed value is x.” To open, prove
(using NIZK) that “this is a hard-commit to x.” Correctness will follow from the correctness properties
of the NIZK and of the commitment scheme. The binding property will follow from the fact that the
commitment scheme is unconditionally binding, and from the soundness of the NIZK. Simulatability will
follow from the security of the commitment scheme and from the zero-knowledge property (i.e., existence
of the zero-knowledge simulator) of the NIZK.

More formally, consider the following construction of a mercurial commitment scheme:

Building blocks NIZK proof system (Prove,Verify) for all of NP, unconditionally binding commit-
ment scheme (Comm-Setup,Commit).

Setup On input 1k:

• Generate a random string σ for the NIZK proof system with security parameter k. Let us say
that the NIZK proof system requires an �(k)-bit random string. Then σ ← {0, 1}�(k).

• Run the setup algorithm for the commitment scheme to obtain the public parameters required:
p ← Comm-Setup(1k).

• Output PK = (σ, p). (Let the domain DPK be the same as for the underlying commitment
scheme. Without loss of generality, assume that 0, 1 ∈ DPK .)

Hard-Comm On input (PK,x, r):

• Parse PK = (σ, p) and r as two random strings, r1 and r2.

• Compute C1 = Commit(p, 0, r1), C2 = Commit(p, x, r2); output commitment C = (C1, C2).

Soft-Comm On input (PK, r):

8

• Parse PK = (σ, p) and r as two random strings, r1 and r2.

• Compute C1 = Commit(p, 1, r1), C2 = Commit(p, 1, r2); output commitment C = (C1, C2).

Tease On input (PK,x, r, C):

• Parse PK = (σ, p), C = (C1, C2), and r = r1 ◦ r2.

• Let the NP-language Lt be defined as follows:

Lt = {X : X = (p, x,C1, C2) such that ∃r1, r2

such that C1 = Commit(p, 1, r1) ∨ C2 = Commit(p, x, r2)}

Let X = (p, x,C1, C2). Let the witness W = (r1, r2). Compute and output τ = Prove(σ,X,W).

Ver-Tease On input (PK,C, x, τ):

• Parse PK = (σ, p) and C = (C1, C2); let X = (p, x,C1, C2)

• Output the decision of Verify(σ,X, τ) for language Lt defined above.

Open On input (PK,x, r, C):

• Parse PK = (σ, p), C = (C1, C2), and r = r1 ◦ r2.

• Let the NP-language Lo be defined as follows:

Lo = {X : X = (p, x,C1, C2) such that ∃r1, r2

such that C1 = Commit(p, 0, r1) ∧ C2 = Commit(p, x, r2)}

Let X = (p, x,C1, C2). Let the witness W = (r1, r2). Compute and output π = Prove(σ,X,W)
for language Lo.

Ver-Open On input (PK,C, x, π):

• Parse PK = (σ, p) and C = (C1, C2); let X = (p, x,C1, C2)

• Output the decision of Verify(σ,X, π) for language Lo defined above.

Theorem 2.1. The construction above is a mercurial commitment scheme, assuming the underlying
primitives satisfy the definitions of NIZK proofs for NP and unconditionally binding commitment schemes.

Proof. The correctness property is clear. Let us prove the binding and the simulatability properties.

The binding property The binding property follows by a standard argument from the soundness prop-
erty of the non-interactive zero-knowledge proof system. We give this argument here. Suppose that we
have an adversary that, on input PK = (σ, p) can, with non-negligible probability ε(k), produce values C,
x, x′ and π and π′ such that x �= x′, Ver-Open(PK,C, x, π) = ACCEPT and Ver-Open(PK,C, x′, π′) =
ACCEPT. By construction this means that C = (C1, C2) are such that π and π′ are, respectively, NIZK
proofs that (1) there exist r1 and r2 such that C1 = Commit(p, 0, r1) and C2 = Commit(p, x, r2); and (2)
there exist r′1 and r′2 such that C1 = Commit(p, 0, r′1) and C2 = Commit(p, x′, r′2). With high probability
over the choice of p, no such r2 and r′2 exist, and so one of the statements (1) or (2) is false. Therefore, if the
NIZK verifier accepts the proofs π and π′, then the proof system is not sound. The case when the adver-
sary produces the values C, x, x′ and π and τ are such that x �= x′, Ver-Open(PK,C, x, π) = ACCEPT
and Ver-Tease(PK,C, x′, τ) = ACCEPT, is analogous.

9

The simulatability property Let us give the descriptions of the algorithms that comprise the simu-
lator, and then prove that the resulting simulation works.

Building blocks The simulator algorithms for the NIZK proof system (ZKSim-Setup,ZKSim-Prove).
The algorithm ZKSim-Setup outputs a public string σ (indistinguishable from random) as well as
some secret value s required for simulating a non-interactive zero-knowledge proof. ZKSim-Prove
takes an input the string σ that was generated using ZKSim-Setup, the secret s and some true
statement x ∈ L where L is a language in NP, and outputs a proof π that is distributed in such a way
that it is indistinguishable from a proof that would be produced by the real prover Prove(σ, x,w)
where w is any witness for x ∈ L.

Sim-Setup On input 1k:

• Compute (σ, s) ← ZKSim-Setup(1k).

• Run the setup algorithm for the commitment scheme and obtain the public parameters re-
quired: p ← Comm-Setup(1k).

• Output PK = (σ, p), TK = s.

Sim-Commit On input (PK,TK) and some randomness (r1, r2), compute C1 = Commit(0, r1), C2 =
Commit(0, r2), and output C = (C1, C2).

Sim-Tease On input (PK,TK, (r1, r2), x), parse PK = (σ, p), TK = s, let C1 and C2 be as above, and
for the language Lt defined above, output τ ← ZKSim-Prove(σ, s, (p, x,C1, C2)).

Sim-Open On input (PK,TK, (r1, r2), x), parse PK = (σ, p), TK = s, let C1 and C2 be as above, and
for the language Lo defined above, output π ← ZKSim-Prove(σ, s, (p, x,C1, C2)).

What remains to be shown is that no distinguisher will be able to tell whether he is talking to a
committer or to a simulator. This follows by a standard hybrid argument. Let us construct “hybrid”
oracles whose output is distributed “in between” the outputs of the Committer and the Simulator.

Hybrid HC0 This oracle first sets up the public parameters according to the correct Setup algorithm.
It then behaves in exactly the same way as the Committer oracle.

Hybrid HC1 This oracle sets up the public parameters according to the Sim-Setup algorithm. However,
from that point on it behaves the same way as the Committer oracle.

Hybrid H0 This oracle sets up the public parameters according to the Sim-Setup algorithm. It executes
all the Hard-Comm and Soft-Comm queries correctly. However, when responding to an Open
or Tease query, it uses ZKSim-Prove instead of Prove for computing a non-interactive zero-
knowledge proof. Note that this is the same as running Sim-Tease and Sim-Open instead of
Tease and Open.

Hybrid Hi This oracle sets up the public parameters according to the Sim-Setup algorithm. For the
first i commit queries, it runs Sim-Commit instead of Hard-Comm and Soft-Comm. Beginning
from Hard-Comm or Soft-Comm query number i + 1, this oracle starts producing the correct
output. This oracle always uses Sim-Tease and Sim-Open in place of Tease and Open.

Let T (D) be a polynomial bound on the number of queries issued by D. It is clear that Hybrid
HT (D) acts the same way that the Simulator does. Therefore, it is sufficient to show that (1) HC0 is

10

indistinguishable from HC1; (2) HC1 is indistinguishable from H0; and (3) for all polynomials poly(k),
for all 0 < i ≤ poly(k), Hybrid Hi behaves in a way that is indistinguishable from Hybrid Hi−1.

Statement (1) follows from the fact that the output σ of ZKSim-Setup for NIZK is indistinguishable
from a random σ. Similarly, statement (2) follows because we are using a multi-theorem non-interactive
zero-knowledge proof system, and so ZKSim-Prove’s output is distributed the same as that of Prove.

Finally, for (3) we need a (standard) hybrid argument. Namely, suppose that for some i, Hi−1 can
be distinguished from Hi. Then we break the security of the commitment scheme Commit. We attack
Commit as follows: suppose that we are given public parameters p, and two commitments C1 and C2.
The task is to tell whether C1, C2 are commitments to (0, 0) or not. Further, suppose that we have a
distinguisher D distinguishing between Hi−1 and Hi. Then we run him as follows: first, we generate
the public parameters: output PK = (σ, p), where σ is the output of ZKSim-Setup. Note that this is
distributed the same way as the output of the setup step for both Hi−1 and Hi. Then, for the first i − 1
queries, do what both Hi−1 and Hi would do, namely, run Hard-Comm and Soft-Comm algorithms in
response to the corresponding queries. For query i, do not run any algorithm, just output C = (C1, C2).
If ever queried for Tease or Open corresponding to these, run Sim-Tease or Sim-Open. For queries
beginning with query i + 1, run Sim-Commit. It is clear that, by using the distinguisher, one can
distinguish whether (C1, C2) are commitments to (0, 0).

Remark. As noted in the introduction, the same construction can be used to achieve interactive
mercurial commitments, from standard commitments and (interactive) zero knowledge proofs. Since both
these building blocks are implied by OWF, the construction yields interactive mercurial commitments
based on OWF.

2.3.2 From Claw-Free Trapdoor Bijections

We now construct a mercurial bit-commitment scheme under the assumption that there exist claw-free
trapdoor bijections.5 Specifically, slightly generalizing the notion of claw-free permutations of [GMR88],
we assume that there exist indexed families of bijections {fi}i∈I⊆{0,1}n , fi : Dfi

→ Ri and {gi}i∈I⊆{0,1}n ,

gi : Dgi → Ri, and an efficiently computable distribution ∆ on pairs (i, ti) ∈ {0, 1}n × {0, 1}poly(n) such
that:

• ti is trapdoor information that allows fi to be inverted efficiently.

• fi and gi are claw-free. That is, when given i sampled according to ∆, no efficient algorithm can,
with nonnegligible probability, find s ∈ Dfi

and s′ ∈ Dgi such that fi(s) = gi(s′).

Employing this assumption, we construct mercurial bit-commitments:

• PK = Setup(1n) = i where (i, ti) is sampled from ∆

• Using randomness (r0, r1) ∈ Dfi
× Dgi ,

Hard-Comm(i, 0, (r0, r1)) = (fi(r0), gi(r1)) and Hard-Comm(i, 1, (r0, r1)) = (gi(r1), fi(r0))

• Using randomness (r0, r1) ∈ Dfi
× Dfi

, Soft-Comm(i, (r0, r1)) = (fi(r0), fi(r1))

• For a hard commitment C = (C0, C1), τ = Tease(i, x, (r0, r1), (C0, C1)) = r0.
5Note that in contrast to the construction of the previous section, here we construct a bit-commitment scheme, i.e. we

commit only to values x ∈ {0, 1}.

11

• For a soft commitment C = (C0, C1), τ = Tease(i, x, (r0, r1), (C0, C1)) = rx.

• For both hard and soft commitments Ver-Tease(i, x, τ, (C0, C1)) checks that Cx = fi(τ).

• To open a hard commitment C = (C0, C1) to x, created using the random string (r0, r1), π =
Open(i, x, (r0, r1), (C0, C1)) = (x, r0, r1).

• Given a decommitment π = (x, r0, r1), Ver-Open(i, x, π, (C0, C1)) checks Cx = fi(r0) and C1−x =
gi(r1).

The correctness of this commitment scheme is immediate from the above descriptions. Furthermore, it is
clear that these commitments are hiding since all commitments are pairs of completely random elements
of Ri. That hard commitments are binding follows from the assumption that fi and gi are claw-free.

It remains to show that this commitment scheme is simulatable. The key step in showing simulatability
is to note that if ti (i.e. the trapdoor for fi) is known, then one can easily compute f−1

i (s) for any
given s ∈ Ri, and in particular, one can produce an r′ such that s = fi(r′), even if s was chosen to
be gi(r) for some random r ← Dgi . Thus, if one knows ti, then any “commitment” C of the form
(C0, C1) = (gi(r0), gi(r1)) can be opened arbitrarily. More formally, we have the following simulator.

• Sim-Setup(1n) outputs the pair (i, ti).

• All commitments C = (C0, C1) are generated as Sim-Commit((i, ti), (r0, r1)) = (gi(r0), gi(r1)) using
randomness (r0, r1) ← Dgi × Dgi .

• The teaser value is computed as Sim-Tease((i, ti), x, (r0, r1), (C0, C1)) = f−1
i (Cx).

• Finally, the simulator can open C = (C0, C1) = (gi(r0), gi(r1)) arbitrarily using

Sim-Open((i, ti), 0, (r0, r1)) = (x, f−1
i (C0), r1) and Sim-Open((i, ti), 1, (r0, r1)) = (x, r0, f

−1
i (C1)) .

Still, all commitments are random elements of Ri ×Ri, and since fi and gi are permutations, all decom-
mitments are unique, so the outputs of the simulator are distributed identically to the outputs of a true
committer. Thus, the above mercurial bit-commitment scheme is simulatable; moreover, the simulation
is perfect.

Claw-free trapdoor bijections are an established cryptographic primitive [GMR88]. They are com-
monly realized under the assumption that factoring is hard. However, under the factoring assumption one
can construct much more efficient mercurial commitments, as we do later in this section. Nonetheless, the
above construction based on a claw-free pair is valuable because the existence of a claw-free pair may be
viewed as a generic assumption independent of the difficulty of factoring. Indeed, the assumption seems
reasonable generically: the less the functions fi and gi have to do with each other, the more plausible the
assumption. Note that only fi requires a trapdoor, so gi may be some, completely unrelated, one-way
bijection. It may be reasonable to assume that it is infeasible to find a claw in such a case.

2.3.3 From the Discrete Logarithm Assumption

The following mercurial commitment scheme relies on the intractability of the discrete logarithm problem
in a group G of prime order. When G is taken to be the subgroup of size q of Z

∗
p where q|(p−1) (i.e., G is the

group of d-th order residues in Z
∗
p for a prime p = dq + 1), this mercurial commitment scheme is implicit

in the Zero-Knowledge Sets construction of [MRK03]. Indeed, combining this mercurial commitment
with the Zero-Knowledge Set construction of the next section yields essentially the same construction as
[MRK03].

12

This mercurial commitment scheme is in the shared random string model.6

Recall that the Pedersen commitment scheme [Ped92] employs two randomly chosen generators, g, h ←
G, and a commitment to a message m ∈ {0, 1, . . . , |G| − 1} is computed by selecting a random r ←
{0, 1, . . . , |G| − 1} and letting the commitment be gmhr. The commitment is opened by revealing the
message m and the random exponent r. It is not hard to show that if the committer can open this
commitment in more than one way, then he can easily compute logg(h), a task which is presumed to
be intractable. On the other hand, if the committer knows logg(h), then he can easily open a supposed
commitment c = gk ∈ G to any message m by producing the pair (m, (k − m)/ logg(h) mod |G|). This
observation is essential to the following mercurial commitment scheme which is based on the Pedersen
commitment.

• Setup(1k) selects G and (g, h) ← G × G.

• The hard commitment (with random string (r0, r1) ← {0, 1, . . . , |G| − 1}2) is simply the Pedersen
commitment using the generator pair (g, hr1): Hard-Comm((g, h), x, (r0 , r1)) = (gx(hr1)r0 , hr1)

• The soft commitment (with (r0, r1) ← {0, 1, . . . , |G|−1}2) is Soft-Comm((g, h), (r0 , r1)) = (gr0 , gr1).

• For a hard commitment C = (C0, C1), τ = Tease((g, h), x, (r0 , r1), (C0, C1)) = r0.

• For a soft commitment C = (C0, C1), τ = Tease((g, h), x, (r1 , r2), (C0, C1)) = (r0 − x)/r1 mod |G|.
• In either case, Ver-Tease((g, h), (C0 , C1), x, τ) checks that C0 = gx · Cτ

1 .

• Open computes (π0, π1) as Open((g, h), x, (r0 , r1), (C0, C1)) = (r0, r1).

• Finally, verification is similar to Pedersen’s, with an additional step to ensure that the second
generator C1 was chosen as a known power of h, and hence that logg(C1) is not known to the
committer: Ver-Open((g, h), (C0 , C1), x, (π0, π1)) checks that C0 = gx · Cπ0

1 and that C1 = hπ1.

The correctness of the above algorithms is easily verified. The proof that hard commitments are binding
is just as with the Pedersen commitment; indeed, the ability to open a commitment C = (C0, C1) in
two ways implies knowledge of logg(h). This scheme is clearly hiding because all commitments consist of
random elements from G × G. As for simulatability, we define the simulator as follows.

• Let Sim-Setup(1k) = ((g, h),TK) where g ← G, TK ← {0, 1, . . . , |G| − 1} and h = gTK . Observe
that now logg(h) = TK is known to the simulator. It is not hard to see that all the above
commitments can be opened arbitrarily when logg(h) is known, and thus the simulator can easily
open any commitments that it needs to, as follows.

• Sim-Commit((PK,TK), (r0, r1)) = (gr0 , gr1) ← G × G (where (r0, r1) ← {0, 1, . . . , |G| − 1}2).

• Sim-Tease((PK,TK), r, x) = (r0 − x)/r1 mod |G|.
• Sim-Open((PK,TK), (r0, r1), x) = (r0 − TK · x)/r1 mod |G|.

Finally, we note that the distribution of outputs from these simulator algorithms is identical to the
distribution of outputs from a true committer: in both cases, g and h are random generators of G and
all commitments are random pairs (C0, C1) ← G × G. Thus, this mercurial commitment scheme is
simulatable; moreover, the simulation is perfect.

6Actually, this scheme in the shared random string model only if a description of G that allows for efficient group
operation, as well as two elements g, h such that logg(h) is hard to compute, can be generated from a shared random string.
This is the case for all groups commonly used in discrete-logarithm-based schemes, such as Z

∗
p and its subgroups, as well as

elliptic curve groups. It is possible, however, that there are also groups where DL is hard only if the group description is
generated using some secret coins.

13

2.3.4 From the Hardness of Factoring

Our final construction is based on the hardness of factoring. Like the discrete logarithm construction,
this scheme commits to many bits simultaneously. This is a modification of the trapdoor commitment
construction implicit in the GMR signature scheme [GMR88]. We note that a similar mercurial commit-
ment scheme (based on RSA rather than factoring, but allowing for interesting extensions based on the
Strong RSA assumption) was independently discovered by Gennaro and Micali [GM06].

The commitment scheme from [GMR88] commits to an �-bit message m by publishing tmr2�
, some

fixed known t ∈ QRN and random r ∈ Z
∗
N . Decommitment involves simply revealing r. The ability to

break binding and decommit to two different values implies the knowledge of a square root of t; conversely,
if one knows 2�-th root of t, then one can decommit to any value. Thus, the main idea for turning this
into mercurial commitments is to vary t, using one whose 2�-th root is known for soft commitments, and
one who square root is provably unknown for the hard commitments. (Note that this approach is similar
in spirit to the discrete-logarithm-based scheme of Section 2.3.3, where a different generator is used each
time, whose discrete logarithm is known for soft commitments and unknown for hard commitments.)

The mercurial commitment scheme runs as follows:

• Let the message space be {0, 1}�.

• Setup(1n) chooses an RSA modulus N = pq, where p ≡ q ≡ 3 (mod 4), and a random element
y ∈ Z

∗
N . Let U = y2. PK = (N,U).

• Using randomness (r0, r1) ∈ Z
∗
N × Z

∗
N , Hard-Comm((N,U),m, (r0, r1)) = (Ur2

0, r
2�

1 (Ur2
0)

m).

• Using randomness (r0, r1) ∈ Z
∗
N × Z

∗
N , Soft-Comm((N,U), (r0, r1)) = (r2�

0 , r2�

1).

• For a hard commitment C = (C0, C1), τ = Tease((N,U),m, (r0, r1), (C0, C1)) = r1.

• For a soft commitment C = (C0, C1), τ = Tease((N,U),m, (r0, r1), (C0, C1)) = r1r
−m
0 .

• Ver-Tease((N,U),m, τ, (C0, C1)) checks that C1 = Cm
0 (τ)2

�
.

• To open a hard commitment C = (C0, C1) to m, created using the random string (r0, r1),
π = Open((N,U),m, (r0, r1), (C0, C1)) = (m, r0, r1).

• Given a decommitment π = (m, r0, r1), Ver-Open((N,U, �),m, π, (C0, C1)) checks C0 = Ur2
0 and

C1 = Cm
0 r2�

1 .

The correctness of this commitment scheme follows directly from the above definitions. Simulatability is
also fairly simple:

• Sim-Setup(1n) = (N,U, y) where N is generated as before, y is a random element from Z
∗
N , and

U = y2�
. Because squaring is a permutation over quadratic residues, U is still a random square.

• Sim-Commit((N,U, y), (r0, r1)) = (Ur2�

0 , r2�

1).

• Sim-Tease((N,U, y),m, (r0, r1), (C0, C1)) = r1(yr0)−m.

• Sim-Open((N,U, y),m, (r0, r1)) = (r2�−1

0 , r1(yr0)−m).

14

Again the output of this simulator and of the original scheme are distributed identically. Every
commitment is a pair of random squares, and given a commitment and a message the decommitment is
unique. Thus the commitment scheme is perfectly simulatable.

We have only to show that this scheme is binding. Suppose there exists a hard commitment (C0, C1)
which can be opened as (m, r0, r1), and (m′, r′0, r′1), where m = b1 . . . b�, and m′ = b′1 . . . b′�. Both openings
can be successfully verified, thus we have C0 = Ur2

0 = Ur′20 , and C1 = Cm
0 r2�

1 = Cm′
0 r′2�

1 . Given that
m �= m′, this means that r1 �= r′1. Let f0(x) = x2, f1(x) = C0x

2. Note that finding a claw (i.e. x0, x1

such that f0(x0) = f1(x1)) would give a square root of U : (U = (x0x
−1
1 r0)2). This would then allow us

to factor N . Thus, this is a claw-free pair. Note also that Cm
0 r2�

1 = fb�
(fb�−1

(. . . (fb1(r1)))). Since there
are two verifiable openings, this must be equal to Cm′

0 r′2�

1 = fb′�(fb′�−1
(. . . (fb′1(r

′
1)))). Let i be the smallest

index such that fbi
(fbi−1

(. . . (fb1(r1)))) = fb′i(fb′i−1
(. . . (fb′1(r

′
1)))). Such an i must clearly exist, and as

long as r′1 �= r1 we also have bi �= b′i. Thus we have found a claw between f0 and f1 which will allow us
to factor N .

A similar proof shows that we cannot tease-open to one value and hard open to another.
Note that a similar scheme using an arbitrary RSA modulus N can be created using a modified version

of the commitment described in [Fis01]as follows:

• Let �′ = � + n where � is the message length as above.

• Setup(1n) chooses an odd n-bit RSA modulus N = pq, and a random element y ∈ Z
∗
N . Let

U = y2n
. PK = (N,U).

• Using randomness (r0, r1) ∈ Z
∗
N × Z

∗
N , Hard-Comm((N,U),m, (r0, r1)) = (Ur2�′

0 , r2�′
1 (Ur2�′

0)m).

• Given a decommitment π = (m, r0, r1), Ver-Open((N,U, �),m, π, (C0 , C1)) checks C0 = Ur2�′
0 and

C1 = Cm
0 r2�′

1 .

The other definitions are as above, with �′ replacing �. Again, correctness follows directly from these
definitions. Simulatability is obtained by choosing U = y2�′

for random y. For an odd n bit modulus,
squaring is a permutation on the 2nth powers. Since �′ > n this means U is distributed like the 2nth
powers as in the Setup above.

The binding property is a bit more complicated. Suppose we have a hard opening (m, r0, r1) and
a tease opening (m′, r′1) for commitment (C0, C1) with m �= m′. Then if the verification algorithms

accept, we have C0 = Ur2�′
0 and C1 = r2�′

1 Cm
0 = r′1

2�′
Cm′

0 . From this we get (r1

r′1rm−m′
0

)2
�′

= Um−m′
.

Let i be the maximum number of least significant bits on which m and m′ coincide. Note that this

means m−m′
2i is odd. Now (r1

r′1rm−m′
0

)2
�′

= (U2i
)

m−m′
2i . We know 2�′ and m−m′

2i are relatively prime,

so there exist a, b such that a ∗ 2�′ + b ∗ m−m′
2i = 1. Then with a little manipulation, we can obtain

(r1

r′1rm−m′
0

)2
�′∗b ∗ (U2i

)2
�′∗a = (U2i

)
m−m′

2i ∗b+2�′∗a = (U2i
)1. Thus, z = r1

r′1rm−m′
0

b ∗ (U2i
)a is a 2�′-th root of

U2i
. Since �′ − i ≥ �′ − � = n this means we can find an 2n-th root,ŷ of U . We already have U = y2n

, so
we show that with probability 1/2 we can can factor N as follows [FF02]:

Let w = y ∗ y−1 mod N . Note that w2n
= y2n

(ŷ2n
)−1 = U ∗ U−1 = 1 mod N . Note also that y is

a random 2n-th root of U which is independent of ŷ, so w is a random 2nth root of 1. We know since
N is a RSA modulus that w2n

= 1 mod p and w2n
= 1 mod q as well (although we do not know p, q).

Now consider the largest power η < n such that w2η �= 1 mod p or w2η �= 1 mod q. We assume such a
η must exist with high probability since w is a random 2n-th root of 1. This means w2η+1

= 1 mod p
and w2η+1

= 1 mod q, and so w2η
= σp mod p and w2η

= σq mod q where σp, σq ∈ {−1, 1}. Since w is a

15

random root, all possibilities for σp, σq are equally likely. Thus, with probability 1/2, σp ∗ σq = −1. But
in that case, we have w2η �= ±1 mod N and w2η+1

= 1 mod N . This means we have found a new square
root of 1 mod N , and thus we can factor N .

Similarly, we can show that we cannot hard open a commitment to two different messages.

3 Constructing Zero-Knowledge Sets

3.1 Definition of Zero-Knowledge Sets

Let us start with an informal definition. A zero-knowledge set scheme (more generally, an elementary
database scheme) [MRK03] consists of three algorithms, ZKS-Setup, P (the Prover) and V (the Verifier)
such that three properties hold: (1) completeness: for any database D, for any x such that D(x) = v
(where v can be a value if x ∈ D or ⊥ if x /∈ D) an honest Prover who correctly commits to D can always
convince the verifier that D(x) = v; (2) soundness: once a commitment to the database D has been
formed (even by a malicious Prover), no P ′ can, for the same x, convince the Verifier that D(x) = v1 and
D(x) = v2 for v1 �= v2; (3) zero-knowledge: there exists a simulator S such that even for adversarially
chosen D, no adversarial verifier can tell whether he is (a) talking to an honest prover P committed to
D, or (b) talking to S who only has oracle access to the data set D.

Let us now give the formal definition. This definition is a revision of the original one due to [MRK03];
we explain the differences below.

Definition 3.1. A database D is a map {0, 1}∗ → {0, 1}∗ ∪ {⊥} such that D(x) �=⊥ for only finitely
many values x. The domain of D is called keys and the range is called values. We will say a key x ∈ D
if D(x) �=⊥.

A ZKS consists of the probabilistic polynomial-time algorithms ZKS-Setup, P = (P1, P2), and V ,
satisfying the following properties:

1. Completeness. For all databases D and for all x

Pr[σ ← ZKS-Setup(1k) ; (com , state) ← P1(1k, σ,D) ; πx ← P2(state, x) :
V (1k, σ, com , x,D(x), πx) = ACCEPT] = 1

2. Soundness. For all x and for all probabilistic polynomial-time malicious provers P ′,

Pr[σ ← ZKS-Setup(1k) ; (com , v1, v2, π1, π2) ← P ′(1k, σ) :
v1 �= v2 ∧ V (1k, σ, com , x, v1, π1) = ACCEPT ∧ V (1k, σ, com , x, v2, π2) = ACCEPT]

is negligible in k (note that v1 and v2 can be strings or ⊥).

3. Zero-Knowledge. There exists a simulator Sim such that for probabilistic polynomial-time malicious
verifiers Adv , the absolute value of the difference

Pr[σ ← ZKS-Setup(1k) ; (D, stateA) ← Adv(1k, σ) ;
(com , stateP) ← P1(1k, σ,D) : AdvP2(stateP ,·)(stateA) = 1] −

Pr[(σ, stateS) ← Sim(1k) ; (D, stateA) ← Adv(1k, σ) ;
(com , stateS) ← Sim(1k, stateS) : AdvSim(stateS ,·,D(·))(stateA) = 1]

is negligible in k. (Immediately above, the notation AdvSim(stateS ,·,D(·)) means that the adversary
gets to choose x and will receive the result of Sim(stateS , x,D(x)) — i.e., the two · symbols refer to
the same value). This defines computational zero-knowledge; perfect and statistical zero-knowledge
can be defined similarly, as discussed below.

16

Let us contrast this definition with the one due to Micali et al. Recall that the definition of [MRK03]
considers the following notion of zero-knowledge. The honest prover generates a commitment to the
database D and then generates proofs of membership (with the value attached) or nonmembership in
response to adversary’s queries. The simulator must generate a “commitment” to the database without
any information about it, and then must also generate “proofs” of membership or nonmembership in
response to adversary’s queries. The simulator is allowed to look up the value of D(x) only when
responding to the query about x, and otherwise has no knowledge of the database. The adversary must
not be able to tell whether it is interacting with the true prover or the simulator, and the simulator must
work for all databases D.

The problem in the [MRK03] definition is with the ∀D quantifier: this quantifier makes it impossible
to construct computational ZKS, unless it is also statistical ZKS.7 For example, the database D may
include information for breaking the computational assumption used—e.g., information needed to invert
the one-way function used in the assumption. More generally, the database D may simply include a
bit for every transcript of the adversary’s view indicating whether the transcript is more likely real or
simulated. Since the adversary has oracle access to the database (via the true prover or the simulator),
the adversary can query the database on its transcript so far, and thus distinguish the true prover and
the simulator.

To make computational ZKS meaningful, therefore, one must confine oneself to databases that do not
provide the adversary with powers otherwise unavailable to it; i.e., one must restrict to polynomial-time
computable databases.

Above, we also generalized the definition of [MRK03] with respect to the shared random string.
We allow, more generally, for shared parameters to be generated by a (trusted) parameter generation
algorithm. If this algorithm simply outputs its random coins, this puts us back in the shared random string
model. Otherwise, we are in the trusted parameters model (which, of course, is a stronger assumption).
The model of our construction depends on the model for the mercurial commitment on which it is based.
As mentioned in the previous section, we have MC constructions in both models.

3.2 ZKS from Mercurial Commitments

In this section we show how, given a mercurial commitment scheme and a collision-resistant hash function,
we can construct a zero-knowledge set. As already mentioned, this construction is essentially the same
as the construction of [MRK03] with the mercurial commitments abstracted as a building block.

3.2.1 On the Role of Collision-Resistant Hashing

In order to construct ZKS from mercurial commitments, we need an additional property: that an ordered
pair of commitments produced by Hard-Comm(PK, ·, ·) and/or Soft-Comm(PK, ·) is in the domain
DPK of the commitment scheme (this property is needed because we will build trees of commitments, with
the parent committing to its two children). This can be accomplished for any mercurial commitment
scheme with sufficiently large DPK by combining it with a collision-resistant hash function H that maps
pairs of commitments into DPK . Then, to commit to a pair of commitments, one would simply commit
to its hash value instead. This approach was already used by [MRK03] with the DL-based mercurial
commitment scheme implicitly constructed there.

The key for the hash function can be included as part of the commitment scheme’s public key.
The security of the resulting construction is easy to prove (we will not do so here for lack of space

7The ZKS construction of [MRK03] achieves perfect zero-knowledge, and so is not affected by this flaw in the definition.
The definition of [MRK03], however, provides also for computational and statistical zero-knowledge; however, here we argue
that their notion of computational zero-knowledge is not meaningful.

17

and because the arguments are standard). From now on, in describing the ZKS construction from
mercurial commitments, we will assume that domain of a mercurial commitment scheme includes pairs
of commitments.

We note that it is necessary to assume collision-resistant hash functions (CRHFs) because they are
implied by ZKS: to build CRHF from ZKS, simply run the prover algorithm on the database D to produce
a commitment C, fixing the prover-randomness to an all-0 string. We can view an arbitrary-length string
b1b2 . . . b� as an elementary database D where D(i) = bi for 1 ≤ i ≤ �, and i > � is not in the database.
It is easy to see that the resulting algorithm is collision-resistant: an adversary who could produce two
strings (databases) that hash to the same commitment C would contradicts the soundness property of
ZKS.

3.2.2 Building ZKS

Below, we construct ZKS for a database D with keys of length8 l given

• a mercurial commitment scheme (Setup,Hard-Comm,Soft-Comm,Tease,Open,Ver-Tease,
Ver-Open) whose domain includes the values v contained in the database, as well as pairs of
commitments (produced by Hard-Comm and/or Soft-Comm);

• a pseudorandom function family {Fs}s∈S that maps binary string of length up to l to binary strings
of length needed for random inputs r to Hard-Comm and Soft-Comm.9

Our construction will be in the shared random string model if the mercurial commitment scheme (and
the collision-resistant hash function, if separate from the mercurial commitment scheme) both require no
more than a shared random string for their parameters. Otherwise, it will be in the trusted parameters
model.

Intuition Informally, to generate a commitment com to the database D, the prover views each key x
as an integer numbering a leaf of a height-l binary tree, and places a commitment to the information
v = D(x) into leaf number x. Each internal node of the tree is generated to contain the commitment
to the contents of its two children. The result is thus a Merkle tree, except that each internal node is a
commitment to, rather than a hash of, its two children. The value com is then the value contained in the
root of the tree.

To respond to a query about x, the prover simply decommits the corresponding leaf and provides the
authenticating path (together with all the decommitments) to the root.

The only problem with the just-described approach is that it requires exponential time (in l) to
compute the tree, because the tree has 2l leaves. This is where mercurial commitments help. Our
exponential-size Merkle-like tree will have large subtrees where every leaf is a commitment to ⊥, because
the corresponding keys are not in the database. Instead of actually computing such a subtree ahead of
time, the prover simply forms the root of this subtree as a soft-commitment, and does not do anything for
other nodes of the subtree. Thus, the resulting Merkle tree gets “pruned” to size at most 2l|D|, because
the only nodes in the tree are ancestors of leaves in D and their siblings. (This is because if a node is
neither an ancestor of a leaf in D nor a sibling of such an ancestor, then both its and its sibling’s subtrees
are empty.)

8As suggested in [MRK03], we can apply collision-resistant hashing to the keys if they are longer, although we will give
up perfect completeness if two keys x1 and x2 such D(x1) �= D(x2) hash to the same result.

9The pseudorandom function family is needed only to save prover storage and make the prover stateless; if the prover
is willing to store the amount of randomness proportional to l(|D| + q), where q is the number of queries, then it is not
necessary.

18

v
1
v
2

v
4

v
7
v
8

v
14

H H S H S H H S

H H S H

H H

com

v
1
v
2

v
4

v
7
v
8

v
14

H H S H H S

H H S H

H H

com

Figure 1: A commitment tree before and after a query for key 11, whose value is not the database. The
parts built in response to the query are shown in the second tree. Hard commitments are denoted by ‘H’
and soft commitments by ‘S’. Each leaf contains a commitment to the value shown rather than the value
itself.

Answering queries about x ∈ D is still done the same way. In response to queries about x /∈ D the
prover generates the portion of the subtree that is missing (from x to the root of the empty subtree). The
value at the root of the empty subtree is then teased (soft-decommitted) to its two (newly generated)
children, and the entire authenticating path from x to com is provided using teasers, rather than hard
decommitments. This is illustrated in Figure 1.

To save the prover from the expense of having to remember all the choices it made when generating
the tree (both initially and in response to x /∈ D queries), we generate all random strings used in the
commitments pseudorandomly rather than randomly.

Soundness follows from the fact that soft decommitments always have the same semantics, namely
that x /∈ D, and that soft decommitments cannot, by the binding property, disagree with hard decom-
mitments. Zero-knowledgeness follows from the simulatability of commitments and from the fact that
decommitments are consistent: a given node will never be (hard- or soft-) decommitted in two different
ways. Note that zero-knowledge will be perfect, statistical, or computational, depending on the simu-
latability of mercurial commitments (however, for perfect and statistical zero-knowledge, the prover must
use truly random, rather than pseudorandom, strings; hence, it must be stateful in order to remember
the random strings it used when responding to queries.)

We formalize the above description in the following section. There are no surprises there, and a reader
able to fill in the details given the intuitive description above can safely skip it.

3.3 Detailed Description of ZKS from Mercurial Commitments

Here we describe the precise details of the construction of Zero-Knowledge sets from mercurial commit-
ments.

• Committing to the Database. To generate the commitment com to the database D, the prover
generates an (incomplete) binary tree of commitments—resembling a Merkle tree—as follows. First,
choose a pseudorandom function Fs from the family by randomly choosing a seed s. To simply
notation, we will denote Fs(a) by ra in the sequel. For each x such that D(x) = v �=⊥, produce
Cx = Hard-Comm(PK, v, rx). Now, for each x such that D(x) =⊥ but D(x′) �=⊥, where x′

denotes x with the last bit flipped, produce Cx = Soft-Comm(PK, rx). Define Cx = nil for all
other x. Now build the tree in a bottom-up fashion as follows: for each level i from l − 1 to 0, and
for each string σ of length i, define Cσ as follows:

1. For all σ such that Cσ0 �= nil and Cσ1 �= nil , let Cσ = Hard-Comm(PK, (Cσ0, Cσ1), rσ).

2. For all σ such that Cσ′ has been defined in step 1 but Cσ has not been (where σ′ denotes σ
with the last bit flipped), define Cσ = Soft-Comm(PK, rσ).

19

3. For all other σ, define Cσ = nil

If the value at the root Cε = nil (this will happen only if D = ∅), redefine Cε = Soft-Comm(PK, rε).
Finally, com is defined to be Cε.

• Answering Queries. When the prover receives a query about a value x that is in the database,
proceed as follows. Let x|i be the first i bits of x, and (x|i)′ be the first i−1 bits of x followed by the
i-th bit flipped. Let πx = Open(PK,D(x), rx, Cx) and πx|i = Open(PK, (Cx|i0, Cx|i1), rx|i , Cx|i)
for 0 ≤ i < l. Return D(x) together with Cx|i, C(x|i)′ for 1 ≤ i ≤ l and πx|i for 0 ≤ i ≤ l. In other
words, the prover returns D(x) together with its authenticating path to the root, which consists of
ancestors of x, their siblings, and proofs that each parent is the commitment to the two children.

If the prover receives a query about a value x that is not in the database, proceed as follows. If
Cx = nil , let h be largest value such that Cx|h �= nil, let Cx = Hard-Comm(PK,⊥, rx), and build
a path from x to Cx|h as follows: let Cx′ = Soft-Comm(PK, rx′); for each level i from l − 1 to
h + 1, define Cx|i = Hard-Comm(PK,Cx|i0, Cx|i1), rx|i), and C(x|i)′ = Soft-Comm(PK, r(x|i)′).
Note that the only values inside the tree redefined by the above procedure are those that were
nil before. Let τx = Tease(PK,D(x), rx, Cx) and τx|i = Tease(PK, (Cx|i0, C(x|i1)′), rx|i , Cx|i) for
0 ≤ i < l. Return ⊥ together with Cx|i , C(x|i)′ for 1 ≤ i ≤ l and πx|i for 0 ≤ i ≤ l. In other words,
the prover returns ⊥ together with its authenticating path to the root, which consists of ancestors
of x, their siblings, and teaser-proofs that each parent is the commitment to the two children.

• Verifying Answers. If the answer is not ⊥, the verifier does the usual Merkle tree verifica-
tion, except with commitments instead of hash functions: he simply performs Ver-Open(PK,
Cx|i , (Cx|i0, Cx|i1), πx) for 1 ≤ i < l, as well as Ver-Open(PK, com , (C0, C1), πε) and
Ver-Open(PK,Cx,D(x), πx). If the answer is ⊥, the verifier also does the usual Merkle
tree verification, except with teaser-proofs instead of hash functions: he simply performs
Ver-Tease(PK,Cx|i , (Cx|i0, C(x|i1), πx) for 1 ≤ i < l, as well as Ver-Tease(PK, com , (C0, C1), τε)
and Ver-Tease(PK,Cx,⊥, τx).

Security Here we provide only a sketch of the security proof.
The scheme described above is complete, because hard commitments can always be (soft- or hard-)

decommitted to the values they were committed to, and soft commitments can always be soft-decommitted
to any value.

Soundness follows by reduction to the binding property of the commitments. Indeed, suppose that
two different answers v1 and v2 to the same query x are produced by a malicious prover and accepted
by the verifier. Consider the following two cases. If v1 �=⊥ and v2 �=⊥, then for some commitment
on the path from x to the root, Ver-Open returns ACCEPT for two different decommitted values. If
v1 �=⊥ and v2 =⊥, or v1 =⊥ and v2 �=⊥, then for some commitment on the path from x to the root,
Ver-Open and Ver-Tease return ACCEPT for two different decommitted values. (In both cases, the
same commitment and the two different decommitted values exist because the root is always the same,
but the leaves are different.) Either case contradicts the binding property of the commitment scheme.

Finally, zero-knowledgeness can be proven as follows. First, by pseudorandomness of F , our prover
is indistinguishable from a prover who uses truly random strings. The zero-knowledge simulator will run
Sim-Setup to generate (PK,TK), and then use Sim-Commit to generate a “commitment” in the roof
of the tree. In response queries, it will use Sim-Commit to generate not-yet-generated nodes on the
path from the root to the queried leaf, and use Sim-Open or Sim-Tease (depending of whether x ∈ D
or not) to decommit nodes on the path to their children. The result will be indistinguishable (from
the prover who uses truly random strings) simply by the simulatability of the mercurial commitment

20

scheme: the malicious verifier and the distinguisher from the definition of ZKS can be jointly viewed as
the machine DOb

k from the definition of mercurial commitments, making queries to the simulator or to the
real prover. Zero-knowledge will be perfect, statistical, or computational, depending on the simulatability
of mercurial commitments (however, for perfect and statistical zero-knowledge, the prover must use truly
random, rather than pseudorandom, strings; hence, it must be stateful in order to remember the random
strings it used when responding to queries.)

3.3.1 Efficiency

In the above, the specific choice of mercurial commitment, collision-resistant hash function and pseudo-
random function will affect the efficiency of the protocol. We discuss these efficiency considerations in
more detail below.

Let us fix a security parameter k, and we shall assume that all database keys are hashed to k bits, so
that l = k. Moreover, we assume that the collision-resistant hash is built into the mercurial commitment
scheme, allowing us to form k-bit commitments to pairs of k-bit strings. In this case, the construction
of the commitment to the database D clearly requires O(l · |D|) = O(k · |D|) calls to the pseudorandom
function and O(l · |D|) = O(k · |D|) mercurial commitments.

Once the database has been committed, proofs of membership or non-membership consist of l mer-
curial decommitments each. Thus, if our mercurial commitment supports commitment to 2k-bit strings
with a decommitments of length O(k) (as in our mercurial commitments based on the discrete logarithm
or factoring assumptions), then such a proof has length O(l · k) = O(k2). On the other hand, if we only
have mercurial bit-commitment with decommitments of length O(k) (as in our mercurial commitments
based on trapdoor claw-free permutations), then a decommitment to a k-bit string has length O(k2) and
the resulting proof has length O(l · k2) = O(k3).

Finally, the verifier need only verify O(l) = O(k) mercurial decommitments to accept the proof’s
validity.

3.3.2 Improving the Efficiency of DL-based construction

While in general any collision-resistant hash function can be used with our DL-based mercurial commit-
ments, Pedersen’s hash function [Ped92] is suggested by [MRK03] because it is also based on the discrete
logarithm assumption and its parameters can be selected from a shared random string. Given a group
G of prime order q and two generators g and h, Pedersen’s hash function HG,g,h hashes two integers
0 ≤ a, b < q into a single element h ∈ G via h = gahb. It is easy to see that this hash function is
collision-resistant if discrete logarithms in G are hard.

It may seem that Pedersen’s hash function is well suited for use with DL-based mercurial commitments
over the same group G. This, however, is not true, because the range of hash function is G, while the
domain of the commitments is {0, 1, . . . , q − 1}. In particular, if G is the subgroup of size q of Z

∗
p for

q|(p − 1), one would need to choose two separate sets of parameters: (q1, p1) for the hash function and
(q2, p2) for the commitment scheme, with q2 ≥ p1. This seems to be necessary for the construction of
[MRK03] to work (although it is not explicitly stated there).

In addition, to hash two commitments (which consist of two elements of Z
∗
p2

each), multiple iterations
of the hash function are needed, because a single iteration can handle only a pair of elements of Zq1.

Here, we point out two minor modifications the Pedersen’s hash function that eliminate the need for
a second set of parameters and minimize the number of iterations necessary to hash two commitments.
Both modifications rely on folklore results.

First, we will modify the hash function to take four inputs instead of two by using four generators
(all in the shared random string), g1, g2, g3, g4, and outputting, on input (a, b, c, d), the value ga

1gb
2g

c
3g

d
4 .

21

The proof of collision-resistance of this function is a simple exercise and is omitted here.
Our second modification relies (in addition to the DL assumption) on the assumption that Sophie

Germain primes are sufficiently dense (recall that a q is a Sophie Germain prime if p = 2q + 1 is prime).
We let q be a Sophie Germain prime. Then the subgroup G of order q of Z

∗
p is QRp. Consider the

following efficient bijection φ′ between QRp and {1, 2, . . . , q}: if x ≤ q, φ′(x) = x; else φ′(x) = p− x (this
is a bijection because exactly one of (x,−x) is in QRp, because p ≡ 3 (mod 4) since q is odd). Now let
φ(x) = φ′(x) − 1 to make the range of the bijection {0, 1, . . . , q − 1}.

The bijection φ allows us to view G = QRp and {0, 1, . . . , q − 1} as essentially the same.10 Thus,
we will simply modify Pedersen’s hash function to output φ(h) instead of h, and to take inputs in QRp

instead of {0, 1, . . . , q − 1} by applying φ−1 to them first.
The resulting ZKS scheme takes seven values and seven exponentiations per level of the hash tree

to verify (four for the hash function and three for the mercurial commitment). Note that two of the
generators can be shared between the hash function and the mercurial commitment scheme. Because
verifications require only products of fixed-base exponentiations with four bases (except in the case of
tease verification, when a single exponentiation with a random base is required), much precomputation
can be done to speed up verification (see, e.g., [LL94], which can be extended to multiple bases).

Acknowledgments

The authors wish to thank Rosario Gennaro and Adi Shamir for helpful technical discussions, and Monica
Perez for giving our new commitments their name “mercurial.”

The authors are supported in part by the following: Melissa Chase by NSF Grant CNS-0347661
and NSF Graduate Research Fellowship; Alexander Healy by NSF Grant CCR-0205423 and a Sandia
Fellowship; Anna Lysyanskaya by NSF Grant CNS-0374661; Tal Malkin by NSF Grant CCF-0347839;
and Leonid Reyzin by NSF Grant CCR-0311485.

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences, 37(2):156–189, Oct. 1988.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-interactive zero-
knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: non-interactive zero-knowledge based
on any trapdoor permutation. Journal of Cryptology, 9(3):149–166, 1996.

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments: Minimal as-
sumptions and efficient constructions. In Third Theory of Cryptography Conference (TCC),
volume 3876 of Lecture Notes in Computer Science, pages 120–144. Springer-Verlag, 2006.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mer-
curial commitments with applications to zero-knowledge sets. In Ronald Cramer, editor,
Advances in Cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 422–439. Springer-Verlag, 2005.

10We remark that, obviously, a bijection between G and {0, 1, . . . , q − 1} always exists because |G| = q; the reason for
using Sophie Germain primes is that we do not know how construct a simple efficient bijection otherwise.

22

[FF02] Marc Fischlin and Roger Fischlin. The representation problem based on factoring. In RSA
Security 2002 Cryptographer’s Track, volume 2271 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[Fis01] Marc Fischlin. Trapdoor Commitment Schemes and Their Applications. PhD thesis, Univer-
sity of Frankfurt am Main, December 2001.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[GM06] Rosario Gennaro and Silvio Micali. Independent zero-knowledge sets. In 33rd International
Colloquium on Automata, Languages and Programming (ICALP), 2006.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GO92] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In Ernest F. Brickell, editor, Advances in Cryptology —
CRYPTO ’92, pages 228–244. Springer-Verlag, 1992. Lecture Notes in Computer Science No.
740.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal of Computing, 28(4):1364–1396, 1999.

[LL94] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precomputation. In
Yvo G. Desmedt, editor, Advances in Cryptology—CRYPTO ’94, volume 839 of Lecture Notes
in Computer Science, pages 95–107. Springer-Verlag, 21–25 August 1994.

[Lys02a] Anna Lysyanskaya. Signature Schemes and applications to cryptographic protocol design. PhD
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, September 2002.

[Lys02b] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Moti Yung, editor, Advances in Cryptology — CRYPTO 2002, Lecture Notes
in Computer Science, pages 597–612. Springer Verlag, 2002.

[Mic] Silvio Micali. 6.875: Introduction to cryptography. MIT course taught in Fall 1997.

[MRK03] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Proc. 44th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 80–91. IEEE Computer
Society Press, 2003.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Proc. 40th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE Com-
puter Society Press, 1999.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):51–158,
1991.

[ORS04] Rafi Ostrovsky, Charles Rackoff, and Adam Smith. Efficient consistency proof on a commit-
ted database. In Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes
in Computer Science, pages 1041–1053. Springer, 2004.

23

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science, pages 129–140. Springer Verlag, 1992.

A Definitions of NIZK and Conventional Commitment Schemes

Here we describe in more detail the two building blocks used in Section 2.3.1 to construct noninteractive
mercurial commitments from general assumptions (the existence of the second building block is implied
by the existence of the first).

NIZK The first building block is a many-theorem non-interactive zero-knowledge (NIZK) proof system
for an NP-complete language L. This proof system operates in the public random string model, and
consists of polynomial-time algorithms Prove and Verify.

Here, we omit the definition of NIZK, but refer the reader to Blum et al. [BDMP91] and Feige,
Lapidot, Shamir [FLS99]. Instead, we informally sketch this definition:

Algorithms Prove and Verify The algorithm Prove takes as input the common random string σ,
and values (x,w), such that x ∈ L, and w is a witness to this. Prove outputs a proof π. Verify
is the algorithm that takes (σ, x, π) as input, and outputs ACCEPT or REJECT.

Completeness For all x ∈ L, for all witnesses w for x, for all values of the public random string σ, and
for all outputs π of Prove(σ, x,w), Verify(σ, x, π) = ACCEPT.

Soundness For all adversarial prover algorithms A, for a randomly chosen σ, the probability that A
can produce (x, π) such that x /∈ L but Verify(σ, x, π) = ACCEPT, is negligible.

Zero-knowledge There exist algorithms ZKSim-Setup and ZKSim-Prove, as follows: ZKSim-Setup(1k)
outputs (σ, s). For all x, ZKSim-Prove(σ, s, x) outputs a simulated proof πS . Even for a sequence of
adversarially and adaptively picked (x1, . . . , xm) (m is polynomial in k), if for all 1 ≤ i ≤ m, xi ∈ L,
then the simulated proofs πS

1 , . . . , πS
m are distributed indistinguishably from proofs π1, . . . , πm that

are computed by running Prove(σ, xi, wi), where wi’s is some witness that xi ∈ L.

Remark. Note that above we talk about a proof system (Prove,Verify) for a specific NP-complete
language L. Since L is NP-complete, it follows that any language L′ ∈NP also has such a proof system.
We will make use of this fact and, for example, say that the Prove and Verify algorithms work for
some other language L′ ∈NP. By that we will mean that appropriate Prove and Verify algorithms for
L′ can be obtained from those for L.

Commitment Schemes The second building block is a conventional non-interactive uncondition-
ally binding commitment scheme, consisting of algorithms (Comm-Setup,Commit). Note that such
a commitment scheme is already implied by the existence of NIZK, because NIZK implies OWFs,
and in the public-random-string model, OWFs imply setup-free unconditionally binding bit commit-
ment [Nao91, HILL99].

More formally, a non-interactive unconditionally binding commitment scheme is defined as follows:

Definition A.1. A pair of algorithms (Comm-Setup,Commit) constitute a non-interactive uncondi-
tionally binding commitment scheme if:

24

Algorithms Comm-Setup and Commit Comm-Setup is a probabilistic poly-time algorithm that takes
as input the security parameter 1k, and outputs a public key p for the commitment scheme. We
use notation p ← Comm-Setup(1k). p implicitly defines the domain for the committed values,
Dp (|Dp| ≥ 2). Commit is a deterministic algorithm that takes as input the public key p, a value
x ∈ Dp and a random string r of length �r(k) and computes the commitment C = Commit(p, x, r).

Binding property The probability, over the choice of p, that there exist (x1, r1) and (x2, r2), x1 �= x2

such that Commit(p, x1, r1) = Commit(p, x2, r2), is negligible.

Hiding property For all probabilistic polynomial-time algorithms A, there exists a negligible function
ν(k) such that

Pr[p ← Comm-Setup(1k); (α, x0, x1) ← A(p); b ← {0, 1};
r ← {0, 1}�r(k);C = Commit(p, xb, r); b′ ← A(α,C) : b = b′] ≤ 1/2 + ν(k)

25

