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Abstract

We consider the problem of learning integer lattices in the presence of either classification noise or

malicious noise, and show that learning integer lattices is at least as hard as learning Fq-linear subspaces

over any finite field, Fq. In particular, learning integer lattices with noise is as hard as learning a

parity function with noise. We also give a converse result which shows that the ability to learn linear

subspaces of co-dimension 1 over Fp is sufficient to learn a restricted class of lattices, provided that

the factorization of the lattice’s determinant is given.

Introduction

A major open problem in learning theory is that of PAC-learning a hidden parity function in the presence

of classification noise. The problem of learning integer lattices is very closely related to that of learning

parity functions, or more generally, learning linear subspaces of Fn
q . Indeed, the most natural mistake-

bounded algorithms for learning each of these are very similar, and more generally there is a long history

of intimate connections between the geometry of lattices and the geometry of Hamming space [CS93].

For these reasons, it is natural to consider the complexity of learning integer lattices in the presence of

noise, as this might shed some light on the complexity of learning parity in the presence of noise.

In the sequel, we recall (in section 1) basic definitions and properties of lattices, we discuss (in section

2) known algorithms for learning linear subspaces and lattices without noise, we show (in section 3)

that learning integer lattices in the presence of classification (respectively, malicious) noise, is as hard

as learning Fq-linear subspaces of Fn
q in the presence of classification (resp. malicious) noise, and in

particular, as hard as learning parity in the presence of classification (resp. malicious) noise, and finally

we give a converse result (in section 4) which shows that the ability to learn linear subspaces of co-

dimension 1 over Fp is sufficient to learn a restricted class of lattices, provided that the factorization of

the lattice’s determinant is given. We conclude with a discussion of the consequences of these results,

and possible directions for future work.
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1 Lattices

A lattice is a discrete subgroup L of n-dimensional Euclidean space Rn given by L = Zb1 + · · · + Zbm,

where the vectors b1, . . . , bm ∈ Rn are linearly independent. An integer lattice is a lattice where bi ∈ Zn

for all i (or, equivalently L ⊆ Zn), and in this paper we are primarily concerned with integer lattices,

so we shall use the terms interchangeably. The b1, . . . , bm are said to form a basis for the lattice L, and

typically a lattice is given by an n×m matrix of the form:

B =



|
b1

|



|
b2

|

 · · ·


|

bm

|




This allows us to think of L as the image of Zm under the linear map defined by B, i.e. L = BZm.

However, the basis of a lattice is not unique; indeed, if M is an m×m integer matrix with determinant

±1, a so-called unimodular matrix, then it is not hard to verify that BM is also a basis for L and,

conversely, that every basis for L is of the form BM for some unimodular M . It is well-known that the

determinant of the lattice L, given by det(L) =
√

det(BT B), measures the m-dimensional volume of the

fundamental parallelepiped of L,

P (B) = {c1
~b1 + · · ·+ cm

~bm ∈ Rn | 0 ≤ ci < 1}

and is an invariant of the lattice; that is, the determinant does not depend on the choice of basis B.

Another important fact is that L is a lattice, and L′ ⊆ L is a sublattice of L, then the index of L′ in L
(as a subgroup), is given by [L : L′] = |L ∩ P (B′)| = det(L′)/ det(L).

Finally, a lattice is said to be full-dimensional if its basis consists of n linearly independent vectors, i.e.

if L is not contained in any proper subspace of Rn.

For more details about lattices and relevant algorithms, we refer the reader to [CS93, Coh93].

2 Learning Parity and Lattices without Noise

We say that f : {0, 1}n → {0, 1}, is a parity function if

f(x1, . . . , xn) = ⊕
i∈S

xi

for some non-empty subset S ⊆ {1, 2, . . . , n}, and we call vectors x = (x1, . . . , xn), such that f(x) = 0,

positive examples. Thus, the positive examples for a parity function form a linear subspace of Fn
2 of

co-dimension 1 (i.e., dimension n− 1); indeed, it is not hard to see that the positive examples are closed
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under addition modulo 2, and since precisely half of the vectors x ∈ {0, 1}n are positive examples, the

dimension of this space is necessarily n− 1.

The standard algorithm for learning parity is the following mistake-bounded algorithm. In fact, the

algorithm naturally generalizes to learning arbitrary linear spaces S ⊆ Fn over any finite field F, so we

shall give this more general algorithm.

Algorithm 2.1.

Begin with an empty basis B = {}
For each example x ∈ Fn,

If x ∈ span(B) then predict x ∈ S, else predict x /∈ S

If x ∈ S, but x /∈ span(B), set B = B ∪ {x}

The above algorithm clearly never makes any false-positive predictions since the prediction x ∈ S is only

ever made if x can be expressed as a linear combination of vectors that were guaranteed to be in S by

the example oracle, i.e. only if x ∈ S. Every time a false-negative prediction is made, the example x is

added to the basis B, increasing the rank of B by one (since, by assumption, x is not in the span of B).

Therefore at most n false-negative predictions can be made.

This learning algorithm is also efficient, as it only ever requires the solution to a linear system over F,

which can be computed in polynomial-time [Coh93].

It is well-known that mistake-bounded algorithms with polynomial mistake bounds, such as this one,

yield polynomial-time, PAC-learning algorithms. Therefore, linear subspaces of Fn
p are PAC-learnable.

We will now turn our attention to the algorithm for learning integer lattices, but first we need to define

the learning problem at hand.

Definition 2.2. The problem of PAC-learning a hidden integer lattice, L, is the following. Given ε, δ, m,

and an example oracle providing examples x ∈ Zn and their classification (whether x ∈ L) drawn from a

distribution D over [−m,m]n, learn, in time poly(1/ε, 1/δ, log m,n), a hypothesis h that with probability

1− δ has error at most ε on examples drawn from the distribution D.

A very natural mistake-bounded algorithm for learning integer lattices is the following, which is essentially

the algorithm given in [HSW92].

Algorithm 2.3.

Begin with an empty basis B = {}
For each example x ∈ Zn,

If x is contained in, 〈B〉, the lattice generated by B, then predict x ∈ L, else predict x /∈ L
If x ∈ L, but x /∈ 〈B〉, then

set B = B ∪ {x} and replace B by an equivalent basis of linearly independent vectors
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As with the previous algorithm, this algorithm will clearly never make false-positive predictions. When

a false-negative prediction is made, there are two cases: Either (1) x /∈ span(B), in which case the rank

of the basis increases by one, so there can be at most n such false-negatives, or (2) x ∈ span(B) but

x /∈ 〈B〉, in which case L′ = 〈B〉 is a proper sublattice of the lattice L′′ = 〈B∪{x}〉, so it must be the case

that det(L′′) ≤ det(L′)/2 (since det(L′)/ det(L′′) = [L′′ : L′] > 1). Each time a false-negative of the first

type is made, the determinant can increase by at most a factor of m
√

n (the length of the longest vector

in [−m,m]n), and the first false-negative results in the determinant changing from 0 to some value that

is at most m
√

n, thus the determinant of 〈B〉 can never increase by more than than a total of (m
√

n)n.

On the other hand, the determinant of 〈B〉 must always be the square-root of a positive integer (except

when the algorithm begins), so the number of false-negatives of the second type (which each reduce the

determinant by at least a factor of 2) is at most log2((m
√

n)n) = n log2(m
√

n). This gives a mistake

bound of n + n log2(m
√

n).

Also, this algorithm is efficient: testing if x ∈ 〈B〉 simply involves solving the real linear system By = x,

and checking if y is an integer vector. Additionally, computing a basis B′ that is equivalent to B ∪ {x},
but that consists of linearly independent vectors, can be performed in polynomial time, using an efficient

algorithm for computing the so-called Hermite Normal Form of a lattice, [Coh93, MW00, HSW92].

As before, such a polynomial mistake bound implies the existence of a PAC-learning algorithm for learning

a hidden integer lattice.

Another definition whose importance will become apparent later, is the following restricted notion of

learning a hidden lattice.

Definition 2.4. The problem of PAC-learning a hidden full-dimensional, square-free integer lattice, L,

is the following. Provided that L is a full-dimensional lattice, that det(L) is square-free (i.e., not divisible

by any square integer), and that the factorization of det(L) is given to the learning algorithm, then given

ε, δ, m, and an example oracle providing examples x ∈ Zn and their classification (whether x ∈ L) drawn

from a distribution D over [−m,m]n, learn, in polynomial time, a hypothesis h that with probability 1− δ

has error at most ε on examples drawn from the distribution D.

3 Learning Fq-Linear Subspaces via Lattices

Although it will be subsumed by a more general result, we first give a simple reduction that shows that

learning an integer lattice under any noise conditions is as hard as learning a hidden parity function under

the same noise conditions.

Proposition 3.1. There is a PAC-learning reduction from learning parity to learning integer lattices,

using the same examples.
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Proof. Let P denote the collection of positive examples of the hidden parity function. Now let y be an

arbitrary vector in {0, 1}n and define a lattice

L = {v ∈ Zn | v ≡ x mod 2, for some x ∈ P}

where v ≡ x mod 2 means that vi ≡ xi mod 2 in each coordinate. Clearly, if y ∈ P , then y ∈ L.

Conversely, if y ∈ L, then y ≡ x (mod 2) for some x ∈ P , and since P ⊆ {0, 1}n and y ∈ {0, 1}n, we have

y = x, and hence y ∈ P . Therefore, L ∩ {0, 1}n = P , so the ability to learn L under any distribution

restricted to {0, 1}n implies the ability to learn parity under any distribution.

In fact, the above proof generalizes to any Fp-linear subspace, S ⊆ Fn
p , by using the lattice

L = {v ∈ Zn | v ≡ x mod p, for some x ∈ S}

yielding the following more general reduction.

Proposition 3.2. There is a PAC-learning reduction from learning Fp-linear subspaces of Fn
p to learning

integer lattices, using the same examples.

At this point, we note that if we restrict our attention to the problem of learning an Fp-linear subspace,

S ⊆ Fn
p , of co-dimension 1, by analogy with parity which is a linear subspace of Fn

2 of co-dimension 1,

then the resulting lattice

L = {v ∈ Zn | v ≡ x mod p, for some x ∈ S}

has determinant det(L) = p. Indeed, the subspace S contains pn−1 points, so by the above argument,

we have |L ∩ [0, p)n| = pn−1. On the other hand, we have that pZn is a sublattice of L, and hence

[L : pZn] = det(pZn)/ det(L) = pn/ det(L). Since [L : pZn] = |L ∩ [0, p)n| = pn−1, it must be the case

that det(L) = p.

We also note that the lattice L is full-dimensional, as it contains n linearly independent vectors (e.g.,

{(p, 0, 0, . . . , 0), (0, p, 0, . . . , 0), . . . , (0, 0, 0, . . . , p)}). Thus, since p is known (implicitly) to the learning

algorithm, the problem of PAC-learning Fp-linear subspaces of co-dimension 1 reduces to the problem of

PAC-learning a hidden full-dimensional, square-free integer lattice, a possibly easier problem than that

of PAC-learning arbitrary integer lattices.

Finally, we conclude this section by noting that learning Fq-linear subspaces of Fn
q , where q = pk reduces

to learning linear subspaces of Fkn
p , and consequently reduces to learning integer lattices. Indeed, if we

recall that Fq ' Fp[x]/(f(x)), where f(x) ∈ Fp[x] is an irreducible polynomial of degree k, then given

an Fq-linear subspace S ⊆ Fn
q , there is a basis B = {b1, . . . , bd} for S such that S = Fqb1 + · · · + Fqbd.

Therefore, since Fq = Fp + Fpx+ · · ·+ Fpx
k−1 ⊆ Fp[x]/(f(x)), we have that B ∪Bx∪ · · · ∪Bxk−1 is basis

for S as an Fp-linear subspace of Fn
q , and Fn

q ' Fkn
p as Fp-linear vector spaces. Therefore, despite their

more complex appearance, learning Fq-linear subspaces of Fq reduces to learning Fp-linear subspaces of

Fkn
p .
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4 Learning Lattices via Fp-Linear Subspaces

In this section we focus on reductions from learning lattices to learning Fp-linear subspaces of Fn
p . We

will conclude by showing that learning full-dimensional square-free integer lattices in the presence of

classification (respectively malicious) noise is equivalent to learning co-dimension 1 Fp-linear subspaces

of Fn
p in the presence of classification (resp. malicious) noise.

In the previous section, we noted that the problem of learning a co-dimension 1 subspaces of Fn
p in the

presence of noise reduces to the problem of learning a full-dimensional lattice of determinant p in the

presence of noise. Thus, we have that learning co-dimension 1 subspaces of Fn
p in the presence of noise

reduces to the problem of learning a full-dimensional square-free lattice in the presence of noise. For the

remainder of this section we focus on the converse, i.e. showing that learning full-dimensional square-free

lattices reduces to learning co-dimension 1 subspaces of Fn
p . The reduction is given by the following

algorithm.

Algorithm 4.1.

Given: det(L) and its factorization det(L) = p1p2 · · · pr.

Initialize a learning algorithm, Ai, that learns co-dimension 1 subspaces Si ⊆ Fn
pi

for each 1 ≤ i ≤ r, with

error ε/r and confidence 1− δ/r.

For every example x ∈ Zn and its classification c ∈ {0, 1}, pass (x mod pi, c) to algorithm Ai.

To predict on x ∈ Zn, pass x mod pi to Ai, and respond x ∈ L if and only if all Ai’s predict x ∈ Si.

The following lemmas will be necessary to prove the correctness of this algorithm.

Lemma 4.2. Let L be a full-dimensional integer lattice, and let x ∈ Zn. Then x ∈ L if and only if

x ≡ y mod det(L), for some y ∈ L.

Proof. We begin by showing that det(L)Zn ⊆ L. Let B be a basis matrix for L, i.e. such that L = BZn.

Since L is a full-dimensional integer lattice, B is a square integer matrix and det(L) = |det(B)|. It

is well-known that |det(B)|B−1 is also an integer matrix, for example by “Cramer’s rule” from linear

algebra; thus, if we take an arbitrary z ∈ det(L)Zn, we have that B−1z = |det(B)|B−1z′ for some z′ ∈ Z,

and so it is an integer vector, as |det(B)|B−1 is an integer matrix. Therefore, we may conclude that

z = B(B−1z) ∈ BZn = L, that is z ∈ L, and since z was an arbitrary vector in det(L)Zn, we have

det(L)Zn ⊆ L.

Finally, suppose we have a vector x ≡ y mod det(L), for some y ∈ L. Then x = y + v for some

v ∈ det(L)Zn ⊆ L; since y ∈ L and v ∈ L, it must be the case that x = y + v ∈ L as well.
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Lemma 4.3. Let L be a full-dimensional integer lattice with square-free determinant, det(L) = p1p2 · · · pr,

and let x ∈ Zn. Then x ∈ L if and only if for all primes pi dividing det(L), we have x ≡ yi mod pi, for

some yi ∈ L.

Proof. By applying the Chinese Remainder Theorem to each coordinate separately, we know there is a

natural bijection

ϕ :
Zn

det(L)Zn
→ Fn

p1
× · · · × Fn

pr

defined by ϕ(x1, . . . , xn) 7→ (ϕ1(x1, . . . , xn), . . . , ϕr(x1, . . . , xn)), where

ϕi(x1, . . . , xn) = (x1 mod pi, . . . , xn mod pi) ∈ Fn
pi

Clearly, the image of L/ det(L)Zn under ϕi is a linear subspace consisting exactly of those elements

of Fpi that are congruent to some lattice vector modulo pi. Furthermore, ϕi(L/ det(L)Zn) is given by

BFpi , where B is a basis matrix for L; thus, ϕi(L/ det(L)Zn) has dimension strictly less than n, since

det(B) ≡ 0 mod pi. In particular, there are at most pn−1
i elements in ϕi(L/ det(L)Zn), and hence there

can be at most pn−1
1 · · · pn−1

r = det(L)n−1 elements x ∈ Zn/ det(L)Zn that have, for all i, x ≡ yi mod pi,

for some yi ∈ L. On the other hand, we also have that

|L/ det(L)Zn| = det(det(L)Zn)/ det(L) = det(L)n/ det(L) = det(L)n−1

Since ϕ is a bijection, this proves that the elements of L/ det(L)Zn are the only elements of Zn/ det(L)Zn

that have, for all i, x ≡ yi mod pi, for some yi ∈ L.

Proof of Correctness for Algorithm 4.1. If each sub-algorithm predicts correctly on its subspace, then

lemma 4.3 guarantees that the prediction is correct. Therefore, if each sub-algorithm learns a hypothesis

with error at most ε/r, then by a union bound, the error of the resulting hypothesis is at most ε. Note

that r ≤ log2(det(L)) ≤ log2((m
√

n)n) = n log2(m
√

n), so r is polynomial in n and log2(m), ensuring that

1/(ε/r) is polynomially related to 1/ε. As for the confidence, if each algorithm obtains a good hypothesis

with probability at least (1 − δ/r), then they all succeed with probability at least (1 − δ/r)r ≥ 1 − δ.

Finally, the most important observation is that if each example is corrupted by noise (either classification

or malicious) with probability η, then each sub-algorithm receives examples that are corrupted with

exactly the same probability. In particular, if the sub-algorithms can learn in the presence of noise with

rate η, then so can the algorithm for learning full-dimensional square-free integer lattices.

Conclusion

We have examined several connections between learning integer lattices and learning generalizations of

parity in the presence of noise. We give an integer lattice learning problem that is equivalent to learning

co-dimension 1 subspaces of Fn
p (a natural generalization of parity) in the presence of noise.
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However, the restrictions present in the full-dimensional, square-free integer lattice problem are somewhat

artificial. This suggests that learning arbitrary integer lattices in the presence of noise may in fact be

significantly more difficult than learning parity, or more generally, co-dimension 1 subspaces of Fn
p , in

the presence of noise. Therefore, it may be fruitful to try to prove that lattices cannot be learned in the

presence of noise, before attempting impossibility results for parity or other linear subspaces.

On the other hand, despite the apparent difficulty of learning integer lattices in the presence of noise, it

is plausible that algorithms for learning parity in the presence of noise are more naturally stated in terms

of learning lattices in the presence of noise. In fact, lattice algorithms such as those of [LLL82, Bab86],

are routinely brought to bear on linear subspace problems in Fn
p (especially problems related to linear

error-correcting codes), and perform much better than more näıve algorithms that work in Fn
p directly.

Finally, we should note that the reductions given here exploit very strong structural equivalences between

integer lattices and linear subspaces of Fn
p . As a consequence, the reductions carry over to other models

of learning, such as the statistical query model. It would be of interest to study the effectiveness of these

reductions in other such learning models.
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