
A Method for Computing Optical Flow via Graph Cuts

Alexander D. Healy
ahealy@fas.harvard.edu

Mike Vernal
vernal@eecs.harvard.edu

May 22, 2002

Abstract

One of the fundamental problems of computer
vision is that ofoptical flow– the dense track-
ing of pixels as they move throughout a series
of images. We examine a novel technique for
computing the optical flow using an energy min-
imization problem that can be solved via the use
of max-flow/min-cut algorithms. While we find
that our algorithm requires more investigation as
to the nature of certain constants, our technique
shows promise, especially when the number of
input images is limited.

1 Introduction

A fundamental problem in computer vision is
that ofoptical flow. The goal of optical flow is to
compute the two-dimensional motion field over
a set of images that describes how each pixel
moves. Optical flow has applications to a num-
ber of problems in computer vision, including
image tracking, video interpolation, and motion
sensing.

In this work, we consider a new approach to
the question of optical flow based on the work
of Kolmogorov and Zabih [Kol, KZb]. Kol-
mogorov and Zabih present a method for recov-
ering the three-dimensional geometry of a scene
using energy minimization techniques via graph

cuts. Their method relies upon a set of depth la-
bels to which every point is mapped. They iter-
ate over the label set, greedily re-labelling pixels
when a local improvement is encountered.

Our optical flow method approximates the
flow at each pixel with one of a fixed set of flow
vectors. We select the appropriate flow vectors
by iterating over a set of flow vectors and con-
structing the optical flow using a similar greedy
approach.

One of the key strengths of our algorithm is
that it works well given only two images; other
techniques often require a number of frames in
order to compute the resultant optical flow –
we compute it using only a source and destina-
tion image. We find that our algorithm performs
well, though its parametrization requires further
investigation.

In section 2, we describe some of the previ-
ous work in optical flow. We discuss our prob-
lem formulation and approach in sections 3 and
4. We describe our implementation in section 5,
and we conclude in section 6.

2 Related Work

A number of techniques for optical flow have
been presented in the past twenty years. Barron,
Fleet and Beauchemin, in surveying them, di-
vide them into four main categories: differential

1

methods, region-based methods, energy-based
techniques and phase-based techniques [BFB].

Differential techniques generally compute
the per-pixel velocity via derivatives of im-
age intensity across a large set of pictures.
They generally used first-order and second-
order differential methods to constrain the two-
dimensional velocity at each point. These tech-
niques suffer from the need for numerous input
images, as well as a high-susceptibility to noise.

Region-based methods help to address those
cases where numerical differentiation tech-
niques breakdown. Region-based methods at-
tempt to find the best translation that matches
image regions. These techniques generally take
a top-down approach, matching large areas and
then progressively smaller subareas. Quénot
proposed a dynamic programming approach to
the optical flow problem in [Qúe92, Qúe]. In his
approach, the source and destination images are
divided into parallel and overlapping strips. Us-
ing a pyramidal divide-and-conquer approach, a
displacement field was induced between the two
images that estimated the optical flow.

Energy-based techniques, though similar in
name to our approach, are actually quite differ-
ent. Common energy-based techniques, as Bar-
ron et al. refer to them, involve estimating the
energy of the image through a Fourier filter that
reveals the velocity in the frequency domain.
Phase-based techniques are similar, exploiting
the behavior of band-pass filters to induce the
velocity of regions of the image.

3 Energy Minimization Using
Graph Cuts

In [KZa], a technique is demonstrated for rep-
resenting multi-scene reconstruction as a con-
strained energy minimization problem. The
particular form of the energy minimization al-

lowed for efficient approximation using max-
flow/min-cut techniques. More generally, in
[KZb] the same authors show that an en-
ergy minimization problem of binary variables
x1, . . . , xn can be solved in polynomial time
if E(x1, . . . , xn), the energy function, has the
form:

E(x1, . . . , xn) =
∑
a<b

Ea,b(xa, xb) (1)

where the functionsEa,b satisfy:

Ea,b(0, 0) + Ea,b(1, 1) ≤
Ea,b(1, 0) + Ea,b(0, 1) (2)

Unfortunately, many interesting energy min-
imization problems do not consist of binary
variables. The technique used in [KZa] is that of
α-expansion, which proceeds as follows. Given
an initial assignment of the (not necessarily bi-
nary) variablesx1, . . . , xn ∈ X, we construct a
binary problem by choosing a valueα ∈ X and
then minimizeE(x1, . . . , xn) subject to the con-
straint that eitherxi remain the same orxi = α.
By repeating such a process for allα ∈ X
a good approximation to a global minimum is
achieved.

4 Optical Flow As Energy
Minimization

We wish to apply the techniques of [KZa,
KZb] to the problem of optical flow. For-
mally, we are given two consecutive frames
F1, F2 ∈ ({0, . . . , 255}3)h×w from a video se-
quence, given as discrete images, and we wish
to construct a discrete vector field

f : {1, 2, . . . , h} × {1, 2, . . . , w} → R2 ∪ {∞}

2

such that the(i, j) pixel in F1 moves to position
(i, j) + f(i, j) in F2, and we sayf(i, j) = ∞ if
the pixel(i, j) disappears or becomes occluded
in the subsequent frame.

There are two qualities which we would like
our optical flowsf to have:

• Data Consistency: The pixels close to
(i, j) + f(i, j) in F2 should have similar
color to the pixel in position(i, j) in F1.

• Smoothness: In general,f(i, j) should be
close tof(i ± 1, j) and f(i, j ± 1) (i.e.
the vector field should be nearly “contin-
uous”), except when the data suggests very
strongly that there is a edge.

We measure the data consistency at a point
a = (i, j) by linearly interpolating the color
at (i, j) + f(i, j) in F2 (as a convex combi-
nation of the4 closest pixels) and by comput-
ing the `2 distance between this color and the
color of the (i, j) pixel in F1 (as elements of
RGB = {0, . . . , 255}3 ⊂ R3). Another pos-
sibility is that the point(i, j) vanishes in the fol-
lowing frame. In this case we assign a constant
penaltypenaltydata. We denote this measure of
data consistency byEa,b

data(xa, xb) (for any b ad-
jacent toa).

Smoothness between positions(i1, j1)
and (i2, j2) (where (i1, j1) − (i2, j2) ∈
{(±1, 0), (0,±1)}, i.e. where the pixels are
adjacent) is measured by taking the`2 distance
between the vectorsf(i1, j1) and f(i2, j2). If
both of these vectors are∞ we say the smooth-
ness is0 (i.e. perfectly smooth); however, if
exactly one of them is∞, we assign a constant
penaltypenaltysmooth. We denote this measure
of smoothness byEa,b

smooth(xa, xb).
The energy function which we wish to min-

imize isE(~x) =∑
a<b

cdata · Ea,b
data(xa, xb) + csmooth· Ea,b

smooth(xa, xb)

where the sum is taken over adjacent pixelsa
and b (i.e. if a and b are not adjacent, we
defineEa,b(xa, xb) = 0), and wherecdata and
csmooth are constants. Following [KZa], we use
α-expansion to reduce this energy minimiza-
tion to a sequence of binary energy minimiza-
tions. Since, in the binary case, each ofEa,b

data

andEa,b
smoothsatisfy equation (2), their sum does

as well, and soE(x1, . . . , xn) satisfies equation
(1). In particular, for eachα-expansion step we
construct a graph with a source, a sink, and one
node for each pixel in the image. The edges are
placed as follows:

• If Ea,b(1, 0) > Ea,b(0, 0), an edge of
weightEa,b(1, 0)−Ea,b(0, 0) is added from
the source to vertexa. Otherwise, an edge
of weight Ea,b(0, 0) − Ea,b(1, 0) is added
from the vertexa to the sink.

• If Ea,b(1, 0) > Ea,b(1, 1), an edge of
weightEa,b(1, 0)−Ea,b(1, 1) is added from
the vertexb to the sink. Otherwise, an edge
of weight Ea,b(1, 1) − Ea,b(1, 0) is added
from the source to the vertexb.

• An edge of weightEa,b(0, 1)+Ea,b(1, 0)−
Ea,b(0, 0)−Ea,b(1, 1) is added from vertex
a to vertexb.

Using this construction, a minimum cut cor-
responds exactly to a minimizing assignment. In
particular, the nodes in the source set of the cut
will remain unchanged, and the nodes in the sink
set will be changed to have valueα. [KZa, KZb]
contain further details of this graph construc-
tion.

5 Implementation & Results

We implemented the above algorithm in C++,
using the max-flow/min-cut routines found in
[Kol]. For ann×m image, we created ann×m

3

set of vectors that mapped the original pixels
to their new location, as calculated by our op-
tical flow algorithm. In order to visualize our al-
gorithm, we then linearly-interpolated our com-
puted optical flow via a parameterizable anima-
tion algorithm that incrementally applied the op-
tical flow. The original images and four interpo-
lated images can be seen in figures 1 and 2.

One of the greatest drawbacks of this algo-
rithm was the relative inflexibility of the flow
vector set. We found that the movement of the
pixels could not always be adequately described
with our flow vector sets. A number of pixels
spuriously mapped to infinity rather than follow-
ing the actual optical flow. Increasing the size of
the flow vector set helped to alleviate this prob-
lem, at the expense of computational complex-
ity.

We found that increasing the smoothness co-
efficient created much more coherent but less
adaptable images. For large values ofcsmooth, we
found that our entire image was translated along
the path of the major optical flow. For smaller
values of ofcsmooth, we found that the lack of ad-
equate flow vectors caused a lack of image co-
herence at times.

6 Conclusion

We have shown how optical flow can be formu-
lated as an energy minimization problem that
can be approximated using max-flow/min-cut.
However, there are many seemingly arbitrary
parameters in such an implementation, and we
have not sought to find optimal values of these
parameters. In figures 1 and 2, we used:

cdata = 100

csmooth = 5000

penaltydata = 50

penaltysmooth = 50

Naturally, it would be worthwhile to run further
experiments to determine better values for these
constants. It would also be worthwhile to fix the
gcc-2.96 compiler so that it actually worked.

Additional images, included animated
images representing optical flow, can be
found athttp://www.eecs.harvard.edu/

∼vernal/courses/cs276-2002/ .

References

[BFB] J. L. Barron, D. J. Fleet, and S. S.
Beauchemin. Performance of optical
flow techniques.CVPR, 92:236–252.

[Kol] Vladimir Kolmogorov. Vladimir
kolmogorov’s web page,
http://www.cs.cornell.edu/people/vnk/.

[KZa] Vladimir Kolmogorov and Ramin
Zabih. Multi-camera scene recon-
struction via graph cuts.

[KZb] Vladimir Kolmogorov and Ramin
Zabih. What energy functions can be
minimized via graph cuts?

[Qué92] G. Qúenot. The orthogonal algorithm
for optical flow detection using dy-
namic programming, March 1992.

[Qué] G. Qúenot. Computation of optical
flow using dynamic programming.

4

Figure 1: Frames1 and2

Figure 2: Interpolations between the above frames using the computed optical flow

5

